
Chapter 2

Averaging

The first cooperative control problem we introduce is distributed averaging. Averaging is simple
and useful in many contexts of networked systems. One example is load balancing: say there are five
interconnected machines and ten jobs, having each machine process two jobs is the most efficient.
Another example is environment measuring by sensor networks: if each sensor has measured an
environment parameter, say temperature, contaminated by white noise, then the average of these
measurements is the unbiased, minimum mean-squared error estimate of the true temperature.
Other examples include cyclic pursuit, clock synchronization, and social influencing.

Networked systems and the interactions among component agents (via sensing or communi-
cation) are naturally modeled by digraphs. In this chapter, we show that a necessary graphical
condition to achieve distributed averaging is that the digraph is strongly connected, namely every
agent is reachable from every other agent. This is intuitively evident, as for locally computing the
global average, each agent needs a ‘channel’, direct or indirect, to receive information from every
other agent.

If the digraph is furthermore balanced, meaning roughly that each agent receives equal amount
of in-flow information and out-going information, then averaging is easily solvable by a distributed
algorithm (the consensus algorithm to be introduced in Chapter 4). However, balanced is neither
a mild graphical condition nor a necessary condition for averaging. Hence we will assume only
strongly connected digraphs (possibly unbalanced), and design a distributed algorithm that achieves
averaging.

2.1 Problem Statement
Consider a network of n (> 1) agents. Each agent i (∈ [1, n]) has a state variable xi(k) ∈ R, where
k ≥ 0 is a nonnegative integer and denotes the discrete time.

We model the interconnection structure of the networked agents by a digraph G = (V, E): Each
node in V = {1, ..., n} stands for an agent, and each (directed) edge (j, i) in E ⊆ V×V denotes that
agent j communicates to agent i (namely, the information flow is from j to i). The (in-)neighbor
set of agent i is Ni := {j ∈ V | (j, i) ∈ E}, while the out-neighbor set N o

i := {j ∈ V | (i, j) ∈ E}.

53

54 Chapter 2. Averaging

We say that an algorithm is distributed if every agent i updates its state xi(k) based only on
the information received from Ni, and sends information only to N o

i .

Averaging Problem:
Consider a network of n agents interconnected through a digraph G. Design a distributed

algorithm to update the agents’ states xi(k), i = 1, . . . , n, such that

(∀i ∈ [1, n])(∀xi(0) ∈ R) lim
k→∞

xi(k) =
1

n

n∑

i=1

xi(0).

1

2 3

4

Figure 2.1: Illustrating example of averaging problem with four agents

Example 2.1 We provide an example to illustrate the averaging problem. As displayed
in Fig. 2.1, four agents are interconnected through a digraph G. The neighbor sets of the
agents are N1 = {4}, N2 = {1, 3, 4}, N3 = {1}, N4 = {2, 3}; and the out-neighbor sets are
N o

1 = {2, 3}, N o
2 = {4}, N o

3 = {2, 4}, N o
4 = {1, 2}.

Suppose that the initial states of the agents are x1(0) = 1, x2(0) = 2, x3(0) = 3, x4(0) = 4.
Then the average is 2.5. The averaging problem is to design a distributed algorithm such
that each agent’s state asymptotically converges to the average value 2.5.

A necessary graphical condition for solving the averaging problem is given below.

Proposition 2.1 Suppose that there exists a distributed algorithm that solves the averaging
problem. Then the digraph G is strongly connected.

Proof. The proof is by contradiction. Suppose that the digraph G = (V, E) is not strongly
connected. Then at least one node (agent) in V is not a root of G. Let R denote the set of roots.
Then R &= V. We consider two cases separately: R = ∅ and R &= ∅.

If R = ∅, i.e. G does not contain a spanning tree, then it follows from Theorem 1.1 that G has at
least two (distinct) closed strong components (say) G1,G2. In this case, consider an initial condition

2.2. Distributed Algorithm 55

such that the agents in G1 have initial state c1 ∈ R, those in G2 have c2 ∈ R, and c1 &= c2. Since
G1 and G2 are closed, information cannot be communicated from one to the other. Consequently,
there exists no distributed algorithm that can solve the averaging problem.

It is left to consider R &= ∅. In this case, G contains a spanning tree, and again by Theorem 1.1
that the induced subdigraph by R is the unique closed strong component in G. Consider an initial
condition such that all agents in R have initial state c ∈ R, those in V \R have c′ ∈ R, and c &= c′.
Since R is closed, information cannot be communicated from V \R to R. Consequently, there exists
no distributed algorithm that can solve the averaging problem. !

Owing to Proposition 2.1, we shall henceforth assume that the digraph G is strongly connected.

Assumption 2.1 The digraph G modeling the interconnection structure of the networked agents is
strongly connected.

2.2 Distributed Algorithm

Example 2.2 Consider again Example 2.1. To achieve averaging, a natural idea is that
each agent iteratively computes the (local) average of the state values received from neighbors
and its own state value. Namely, for i ∈ [1, 4]

xi(k + 1) =
1

|Ni|+ 1
(xi(k) +

∑

j∈Ni

xj(k))

= xi(k) +
∑

j∈Ni

1

|Ni|+ 1
(xj(k)− xi(k)).

For the initial states of the agents x1(0) = 1, x2(0) = 2, x3(0) = 3, x4(0) = 4, let us compute
by the above equation the new states at k = 1:

x1(1) = x1(0) +
1

2
(x4(0)− x1(0)) =

1

2
x1(0) +

1

2
x4(0) = 2.5

x2(1) = x2(0) +
1

4
(x1(0)− x2(0)) +

1

4
(x3(0)− x2(0)) +

1

4
(x4(0)− x2(0)) = 2.5

x3(1) = x3(0) +
1

2
(x1(0)− x3(0)) =

7

3

x4(1) = x4(0) +
1

3
(x2(0)− x4(0)) +

1

3
(x3(0)− x4(0)) = 3.

Observe that the state sum at time k = 1 is
∑4

i=1 xi(1) = 31
3 , while the initial state sum

∑4
i=1 xi(0) = 10. The state sum has changed (by 1

3) after one update, and this is in fact
due to unbalanced structure of the digraph G in Fig. 2.1. Indeed, let aij = 1

|Ni|+1 be the

56 Chapter 2. Averaging

(positive) weight of edge (j, i) ∈ E; then the weighted degrees are d1 = 1
2 , d2 = 3

4 , d3 = 1
2 ,

d4 = 2
3 , while the weighted out-degrees do1 = 3

4 , do2 = 1
3 , do3 = 7

12 , do4 = 3
4 — the weighted

digraph is thus not weight-balanced.
Note that the adjacency matrix and standard Laplacian matrix of the weighted digraph G are:

A =





0 0 0 1
2

1
4 0 1

4
1
4

1
2 0 0 0

0 1
3

1
3 0




, L =





1
2 0 0 − 1

2

− 1
4

3
4 − 1

4 − 1
4

− 1
2 0 1

2 0

0 − 1
3 − 1

3
2
3




.

Hence the above state-update scheme may be written in vector form:




x1(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)




=





1
2 0 0 1

2
1
4

1
4

1
4

1
4

1
2 0 1

2 0

0 1
3

1
3

1
3









x1(k)

x2(k)

x3(k)

x4(k)




= (I − L)





x1(k)

x2(k)

x3(k)

x4(k)




.

The matrix I−L is nonnegative and every row sums up to one; thus I−L is a row-stochastic
matrix. On the other hand, not every column of I − L sums up to one, so I − L is not
column-stochastic (and this is caused by non-weight-balancedness of the digraph G). This
means that the initial sum is not kept invariant during each state update, and consequently
asymptotic convergence to the initial average is not achievable. This is illustrated in Fig. 2.2.

The problem illustrated by Example 2.2 suggests a plausible remedy: equip each agent i with
an additional variable si(k) to record the changes in state xi(k), such that the sum of xi(k) and
si(k) is a constant, i.e.

(∀k ≥ 0)
n∑

i=1

(xi(k + 1) + si(k + 1)) =
n∑

i=1

(xi(k) + si(k)) .

We call si(k) the surplus variable of agent i at time k. At k = 0, set si(0) = 0 for all i; this is
intuitive because there is no change yet in state xi(0) to be recorded. Hence for every k ≥ 0, there
holds

n∑

i=1

(xi(k) + si(k)) =
n∑

i=1

(xi(0) + si(0)) =
n∑

i=1

xi(0). (2.1)

Namely the initial state sum is kept invariant using the surplus variables.
In the following, we describe a distributed algorithm that updates the state xi(k) and the surplus

2.2. Distributed Algorithm 57

0 2 4 6 8 10 12 14 16 18 20

Time k

1

1.5

2

2.5

3

3.5

4
S
ta
te

x
i(
k
),
i
=

1,
2,
3,
4 2.516

Figure 2.2: Failure to achieve averaging

si(k) such that (2.1) holds.

Surplus-based Averaging Algorithm (SAA):
Every agent i has a state variable xi(k) whose initial value is an arbitrary real number, and a

surplus variable si(k) whose initial value is 0. At each time k ≥ 0, every agent i performs three
operations:

1) Agent i sends its state xi(k) and weighted surplus ajisi(k) to each out-neighbor j ∈ N o
i . The

weights aji satisfy
∑

j∈N o
i
aji < 1.

2) Agent i receives the state xj(k) and weighted surplus aijsj(k) from each (in-)neighbor j ∈ Ni.
The weights aij satisfy

∑
j∈Ni

aij < 1.
3) Agent i updates its state xi(k) and surplus si(k) as follows:

xi(k + 1) = xi(k) +
∑

j∈Ni

aij(xj(k)− xi(k)) + εsi(k) (2.2)

si(k + 1) = (1−
∑

j∈N o
i

aji)si(k) +
∑

j∈Ni

aijsj(k)−
(
xi(k + 1)− xi(k)

)
. (2.3)

The parameter ε in (2.2) is a positive real number, i.e. ε > 0.

Remark 2.1 In SAA, (2.2) is the state update equation where the first two terms on the right
constitute the averaging scheme in Example 2.2, and the last term specifies a certain amount of
surplus used to influence the state update. On the other hand, (2.3) is the surplus update equation

58 Chapter 2. Averaging

where the first two terms on the right represent sending (resp. receiving) surplus to out-neighbors
(resp. from neighbors), and the third term records the change of state. Summing up (2.3) from
i = 1 to n on both sides, we derive

n∑

i=1

si(k + 1) =
n∑

i=1



(1−
∑

j∈N o
i

aji)si(k) +
∑

j∈Ni

aijsj(k)



−
n∑

i=1

(
xi(k + 1)− xi(k)

)

⇒
n∑

i=1

si(k + 1) +
n∑

i=1

xi(k + 1)) =
n∑

i=1

si(k) +
n∑

i=1

xi(k).

Hence SAA ensures constant sum of states and surpluses for all times; namely (2.1) holds.

Remark 2.2 In SAA, the weights aij are required to satisfy two conditions:
∑

j∈N o
i
aji < 1 and

∑
j∈Ni

aij < 1. In Example 2.2 the weights are chosen to be aij = 1
|Ni|+1 for every j ∈ Ni, and

for that example the two conditions are satisfied. However, in general this choice only ensures
∑

j∈Ni
aij < 1 but not necessarily

∑
j∈N o

i
aji < 1. An example illustrating this point is a variant

of the digraph in Fig. 2.1 with an additional edge (4, 3): in this case
∑

j∈N o
4
aj4 = 1

2 + 1
4 + 1

3 > 1.
A simple choice that does ensure both conditions is the following:

aij = min
{ 1

|Ni|+ 1
,

1

|N o
i |+ 1

}
.

Another simple choice that requires the knowledge of the number of agents is aij =
1
n .

Remark 2.3 Let x := [x1 · · ·xn]% ∈ Rn and s := [s1 · · · sn]% ∈ Rn be the aggregated state and
surplus, respectively, of the networked agents. Then the n equations of (2.2) become

x(k + 1) = (I − L)x(k) + εs(k).

Since
∑

j∈Ni
aij < 1, I − L is nonnegative. Moreover, since L has zero row sums, I − L is row

stochastic. On the other hand, the n equations of (2.3) become

s(k + 1) = (I − Lo)s(k)− (x(k + 1)− x(k))

= Lx(k) + (I − Lo − εI)s(k)

where Lo is the out-degree Laplacian matrix (Remark 1.1 in Section 1.3). Since
∑

j∈N o
i
aji < 1,

I −Lo is also nonnegative. Moreover, since Lo has zero column sums, I −Lo is column stochastic.
Together, SAA is written compactly as follows:

[
x(k + 1)

s(k + 1)

]
= M

[
x(k)

s(k)

]
, where M :=

[
I − L εI

L I − Lo − εI

]
. (2.4)

2.2. Distributed Algorithm 59

The initial conditions are x(0) ∈ Rn (arbitrary) and s(0) = 0. Notice that

• the matrix M has negative entries due to the presence of the Laplacian matrix L in the
(2, 1)-block;

• the column sums of M are equal to one, which implies that the quantity 1T (x(k) + s(k)) is a
constant for all k ≥ 0 (cf. (2.1));

• the state evolution specified by the (1, 1)-block of M , i.e. x(k+1) = (I−L)x(k) is the averaging
scheme in Example 2.2.

0 2 4 6 8 10 12 14 16 18 20

Time k

1

2

3

4

S
ta
te

x
i(
k
),

i
=

1,
2,
3,
4

0 2 4 6 8 10 12 14 16 18 20

Time k

-1.5

-1

-0.5

0

0.5

1

S
u
rp
lu
s
s i
(k
),

i
=

1,
2,
3,
4

2.5

0

Figure 2.3: Convergence to average consensus when ε = 0.1

Example 2.3 Let us revisit Example 2.2. It is checked that the weights aij satisfy the two
conditions

∑
j∈N o

i
aji < 1 and

∑
j∈Ni

aij < 1. We have seen the standard Laplacian matrix
L and the row-stochastic I − L. The following are the out-degree Laplacian matrix Lo and
the column-stochastic I − Lo:

Lo =





3
4 0 0 − 1

2

− 1
4

1
3 − 1

4 − 1
4

− 1
2 0 7

12 0

0 − 1
3 − 1

3
3
4




, I − Lo =





1
4 0 0 1

2
1
4

2
3

1
4

1
4

1
2 0 5

12 0

0 1
3

1
3

1
4




.

With these matrices, the matrix M in (2.4) may be constructed. Fig. 2.3 displays the case

60 Chapter 2. Averaging

in which convergence to the initial average 2.5 is achieved when the parameter ε = 0.1; while
Fig. 2.4 shows that when ε = 0.5, convergence does not occur. Hence the parameter ε needs
to be carefully chosen (to be small enough) so as to achieve averaging.

0 2 4 6 8 10 12 14 16 18 20

Time k

1

1.5

2

2.5

3

3.5

4
S
ta
te

x
i(
k
),
i
=

1,
2,
3,
4

0 2 4 6 8 10 12 14 16 18 20

Time k

-1.5

-1

-0.5

0

0.5

1

S
u
rp
lu
s
s i
(k
),
i
=

1,
2,
3,
4

Figure 2.4: Failure to converge when ε = 0.5

2.3 Convergence Result
The following is the main result of this section.

Theorem 2.1 Suppose that Assumption 2.1 holds. If the parameter ε > 0 is sufficiently
small, then SAA solves the averaging problem.

To prove Theorem 2.1, we will analyze the eigenvalues and eigenvectors of matrix M in (2.4).
Write M in two parts: M = M0 + εE, where

M0 :=

[
I − L 0

L I − Lo

]
, E :=

[
0 I

0 −I

]
.

The proof of Theorem 2.1 is structured in two steps. First, we analyze the eigenvalues and eigen-
vectors of M0. Second, we analyze the (infinitesimal) movement of M0’s eigenvalues upon being

	Preface
	I Mathematical Preliminaries
	Graphs and Laplacian Matrices
	Directed graphs
	Connectivity of digraphs
	Matrices of digraphs
	Standard Laplacian Matrices
	Complex Laplacian Matrices
	Signed Laplacian Matrices
	Notes and References

	II Strongly Connected Digraphs: Averaging and Optimization
	Averaging
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Parameter Bound and Convergence Speed
	Simulation Examples
	Notes and References

	Optimization
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Distributed Resource Allocation
	Simulation Examples
	Notes and References
	Appendix: Convex Optimization

	III Spanning Tree Digraphs: Consensus and Synchronization
	Consensus
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Synchronization
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References
	Appendix: Linear Systems and Feedback Control

	IV Spanning Two-Tree Digraphs: Similar Formation and Localization
	Similar Formation in Two-Dimensional Space
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Localization in Two-Dimensional Space
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	V Spanning Multi-Tree Digraphs: Affine Formation and Localization
	Affine Formation in Arbitrary Dimensional Space
	Problem Statement
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Localization in Arbitrary Dimensional Space
	Problem Formulation
	Distributed Algorithm
	Convergence Result
	Simulation Examples
	Notes and References

	Index

