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To Murray Wonham



Prologue

Immediate after publishing our over 600-page book “Supervisory
Control of Discrete-Event Systems” (Springer 2019), Murray Won-
ham suggested that we begin to prepare the second edition. As
strange as it might have sounded, we did put much work towards
that direction and the second edition was in its healthy growth,
until Murray’s sudden passing in a quiet Sunday morning (which
happened to be the Father’s Day) 2023. While the second edition
will eventually be published (which reflects in part Murray’s work
between 2019 and 2023, until the very moment of his passing), I
took a decision to delay the publication as a period for retrospec-
tion as well as prospection.

I have contemplated for quite a while how to introduce the su-
pervisory control theory in a manner that is as plain as possible.
For a newcomer student, it would be daunting for him or her to be
referred to the over 600-page book as a starting point. I also heard
from systems control colleagues who were interested in studying
supervisory control, but was having hard time in following very
different mathematical modeling and tools used. These have been
my motivations to write up a bootcamp style book, which can be
easily read in a nice Sunday afternoon. Still, essentials of super-
visory control are toured for the reader, which can be stepping
stones for preparing the reader to continue with more advanced
materials.

In writing this book, therefore, I have kept in mind to maximize
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the following ratio (often stressed by Murray as well)

cybernetic insights

mathematical technicalities

In particular, the emphasized links to standard control theory
(based on differential equations and analysis) should help my col-
leagues see that supervisory control belongs to the same category
but with a different clothes for a different scenario. A student,
with or without a control background, should also find it easy to
follow the content that requires a fairly moderate level of mathe-
matics, but can appreciate the concept of ‘feedback’ central for all
branches of control theory.

A key companion to the theoretical content is a python toolbox
PyTCT, with a set of handy functions that assists modeling, visu-
alization, analysis, control design and computation. The reader is
invited to play with PyTCT to get hands-on experience with the
theory.

What is supervisory control of discrete-event systems
The supervisory control theory originated in an attempt to craft

a control theory for computer engineering. Hence the mathemat-
ical models are automata and formal languages (originated from
theoretic computer science), while the theory is of control theoretic
nature: analysis of system properties of controllability, observabil-
ity, optimality, and synthesis of supervisory controllers based on
the principle of feedback.

The perspective of systems in supervisory control is abstract
and of high level. When you see a printer, you don’t worry about
how various mechatronic parts are interconnected under the hood,
but rather think in terms of how the printer operates from mode
to mode, what functions there are and how these functions can be
used in certain orders. When you drive a car (or ride a bike), as
another example, you never worry about how to solve an ordinary
differential equation in order to determine the state of your car,
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but rather which intersection ahead to make your next right turn,
when should you merge to the right lane for the turn, and had you
better switch your foot onto the break pedal to prepare for a light
that is perhaps turning red soon.

This perspective leads to the type of dynamic systems termed
discrete-event systems (DES), with a set of discrete states and
event-driven dynamics. DES can be abstract models of real phys-
ical systems (like the printer and car), where our interest is in
functions and high-level strategies instead of low-level minute me-
chanics or dynamics. DES are also natural models for software
systems (no physics involved), like a computer program, a com-
munication protocol, database control, and ChatGPT prompting.
Supervisory control is about the control of DES, in terms of se-
quences of discrete control actions.

What are in this book
This book covers the basic modeling of DES and control design

method. The six chapters are divided into two parts:

• Chapters 1, 2, 3: automaton model

• Chapters 4, 5, 6: control design

I have chosen to emphasize the ‘state view’, as this view seems
more intuitive to many students, as well as to align with the same
popular view of standard control. In each chapter, nevertheless, I
have included a section (last but two) to describe the behavioral
view (based on formal languages). These sections can be skipped
with no affect to the rest. (As a side note, the behavioral view was
also advocated in standard control to develop a model-independent
control theory, and is recently revived in the context of data-driven
control.) The last section of each chapter collects the PyTCT
functions and codes that are relevant to the theoretic content of
that chapter.

What is not in this book? Many. First of all, this book only
covers the supervisory control theory, leaving out other theories of
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DES such as petri nets and max-plus algebra. Neither does this
book cover more advanced and important topics in supervisory
control, such as partial observation, decentralized control, diagno-
sis, opacity, and timed DES. By leaving all these interesting topics
out, I hope that this book is ‘slim’ enough to give you a swift
start with the theory. At the same time, I hope that the included
essential content can make you hungry to explore more. In the
Epilogue, you can find a “Further Reading” part (for more beef).

Whom is this book written for
This book is written for anyone who is interested in getting a

quick start with supervisory control of DES. In writing the book,
I have three categories of audience in mind. First, students new
to DES – this book can be a readable manual to get you started.
Second, control colleagues who have found DES mathematically
foreign – this book aligns with your state view and feedback con-
trol instinct. Third, and a little far reaching, lower-year students
(freshmen and high schoolers) – I hope this book can be a first in-
troductory course to certain central concepts and ideas in systems
and control, without requiring knowledges of differential equations,
analysis or linear algebra.

Get started with PyTCT
PyTCT is the Python extension of the supervisory control soft-

ware package TCT (originated by Murray and his students in
1990s). Thus the core functions have been tested and debugged for
three decades, and are extremely stable. PyTCT is freely down-
loadable from the GitHub link below. Install it and you are good
to go to use it locally.

https://omucai.github.io/PyTCT-docs

To be more convenient, PyTCT can be used as long as you have
a browser and Internet connection, thus with no hassle of down-
loading or installing the package locally. Thanks to my brilliant

https://omucai.github.io/PyTCT-docs
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students Masahiro Konishi, Shoma Matsui, and Hiromi Takahashi,
we provide a Jupyter Hub where PyTCT is pre-installed. To access
this service, go to the site below and follow instructions therein to
register a free account. (Account registration requires an email
address; not all emails are accepted. If your email doesn’t work,
either contact me directly or download PyTCT to use it locally.)

https://jupyter.caikai.org

Where to find additional material
Supplementary material (slides, codes) and updates to this

book can be found on the website below:

https://www.caikai.org/invitation-scdes

Kai Cai
October 15, 2024

https://jupyter.caikai.org
https://www.caikai.org/invitation-scdes
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Chapter 1

Create An Automaton

1.1 Intuition

Automaton is an intuitive model for describing dynamic systems
(which are systems whose internal states iteratively change). Let’s
start with simple examples to build up intuition about automaton.

Example 1.1 Consider a printer commonly used in office
and at home. A printer is initially at an “idle” state. Say
we want to print a ten-page document. We can start printing
the document by sending a printing job from a computer
to the printer. Upon receiving this job, the printer will
enter a “working” state: papers are being printed. In a
normal situation, the printer will finish printing the ten-
page document and automatically return to the “idle” state.
It is not uncommon, however, we find some problem in
the first few printed pages; say we intended to print the
document double-sided but forgot to tick that option. In
that case, we would manually stop the rest of the printing
by cancelling the printing job; this action makes the printer
return also to the “idle” state.
More problematically, during the printing process papers
may get jammed inside the printer (often happening with
older printers). This causes the printer to enter a “broken”
state (with blinking lights and error codes). Jammed papers
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12 Chapter 1. Create An Automaton

must be removed before the printer may be used again. If the
jammed papers are successfully removed, the printer returns
again to the “idle” state (ready to be used again).
The above (high-level) working mechanism of a printer
can be described by an automaton, graphically displayed in
Fig. 1.1. There are three states:

“IDLE”, “WORKING”, “BROKEN”

which are represented by circles and sequentially labeled 0,
1, 2. Between the states, there are five state transitions
(represented by directed edges):

(“IDLE”, start, “WORKING”)
(“WORKING”, auto_finish, “IDLE”)

(“WORKING”, manual_stop, “IDLE”)
(“WORKING”, breakdown, “BROKEN”)

(“BROKEN”, fix, “IDLE”)

Each of these transitions is written as a triple, where the
first element is the state where the transition exists, the
second element the event or action causing the occurrence
of the transition, and the third element the state where the
transition enters.
In addition, since a printer starts from the “IDLE” state,
this state is the initial state of the automaton. In Fig. 1.1,
the initial state 0 is with an incoming edge without source.
Finally, the “IDLE” and “WORKING” states are selected
as marker states, which are ‘good states’ where the printer
is working normally. These two marker states are repre-
sented by double-circles.

In Example 1.1, the three states in the automaton represent
three different operational status of a printer; thus transitions be-
tween states represent change of status. At this point the reader
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0

1 2

start

breakdown

fixmanual stop

auto finish,

“IDLE”

“WORKING” “BROKEN”

Figure 1.1: Automaton model of printer (the initial state is 0 de-
noted by a circle with an incoming edge without source; the marker
states are 0 and 1 denoted by double-circles; here state 0 is both
the initial state and a marker state)

is invited to use automaton to model a coffee machine, a vending
machine, and an elevator (say serving a three-story building).

In the next example, we shall see that the states of automaton
can also carry physical meanings.

Example 1.2 Say you ordered this book on Amazon. In
many of Amazon’s warehouses, mobile robots are employed
to automatically fetch ordered items from storage shelves.
As displayed in Fig. 1.2, a robot is dispatched from the robot
station (area labeled 0) to fetch the ordered book which is
stored in a shelf in area 3. To get there, the robot may follow
routes either in area 1 or in area 2 (depending on which shelf
the ordered book is located). Once picking up the intended
book from the shelf, the robot makes its way along another
route to deliver the book to the drop-off destination in area 4.
There is also a station for human workers (area 5), where
the robot is not supposed to enter for safety reasons.
The dynamics of robot navigation in the warehouse for item
pickup and delivery can be modeled by an automaton in
Fig. 1.3. There are six states, each representing a labeled
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robot station

human station

drop-off

storage shelvesfree space

free spacerobot station0

1 3

2 4

5

destination

routes where robot and human can travel

Figure 1.2: Warehouse logistic automation using robot for item
pickup and delivery (blue lines represent routes along which robot
and human can travel)

0

1 3

2

5

4
move right

move right move right

move right

move up move up move down move down

Figure 1.3: Automaton model of warehouse robot

physical area. State 0 of the robot station is the initial state
of the automaton, as this is the area where the robot starts
its navigation. State 4 of the delivery destination is the
marker state, which signifies a successful pickup-delivery



1.2. Definition 15

operation. The transitions between these states represent
physical movements of the robot from one area to another.

The reader is invited to consider using automaton to model a
robot solving a maze (say a 3× 3 grid).

1.2 Definition

In the two examples introduced in Section 1.1, we see that the
automaton models have a few elements in common. There is a
set of states, representing activities or locations that the dynamic
system is involved. There is also a set of state transitions, whose
occurrences cause state changes; these state transitions are labeled
by actions or events. Additionally in the set of states, there is a
(unique) initial state and a subset of marker states. These common
elements constitute the mathematical definition of an automaton
(below).

An automaton A is a tuple of five elements:

A = (Q,Σ, δ, q0, Qm) (1.1)

We introduce these five elements in order.

• Q is the finite set of states. Each state represents an activity,
a status, or a location involved in the dynamics of the system.
We take the view that each state has duration in time.

• Σ is the finite set of events. Each event is a label of an
action taken by the system or some external force acting
on the system that causes a state transition. We view that
each event occurs instantaneously, namely the time a state
transition takes is negligible.
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• δ is the finite set of state transition triples, i.e.

δ ⊆ {(q, σ, q′) | q, q′ ∈ Q, σ ∈ Σ} (1.2)

For each element (q, σ, q′) ∈ δ, q is the current state where
the transition exits, σ the event causing the transition, and
q′ the new state where the transition enters. This transition
set δ can also be written as a function, as will be explained
in more detail in Section 1.3.

• q0 ∈ Q is the (unique) initial state. If more than one initial
state is needed, say q01 and q02, this can be modeled by
adding a dummy initial state q0 and dummy state transitions
from q0 to q01 and q02, respectively.

• Qm ⊆ Q is the subset of marker states, which represent those
states considered as good or desired. For instance, comple-
tion of a task, reaching a goal location, or returning to home
station. These states are where the system is desired to be
able to visit.

In Example 1.1, the five elements of the automaton
(Fig. 1.1) are as follows:

Q = {0, 1, 2}

Σ = {start, auto_finish,manual_stop,breakdown,fix}

δ = {(0, start, 1), (1, auto_finish, 0), (1,manual_stop, 0),

(1,breakdown, 2), (2,fix, 0)}

q0 = 0

Qm = {0, 1}

In Example 1.2, the five elements of the automaton
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(Fig. 1.3) are:

Q = {0, 1, 2, 3, 4, 5}

Σ = {move_up,move_down,move_right}

δ = {(0,move_up, 1), (0,move_right, 2), (1,move_right, 3),

(2,move_up, 3), (2,move_right, 4), (3,move_down, 2),

(3,move_right, 5), (5,move_down, 4)}

q0 = 0

Qm = {4}

1.3 State transition function

The set δ of state transitions in (1.2) can be viewed as a function
which maps a pair (q, σ) to a state q′. Thus δ : Q×Σ→ Q, where
the domain is the cartesian product of the state set Q and the event
set Σ:

Q× Σ = {(q, σ) | q ∈ Q, σ ∈ Σ}

Hence δ(q, σ) = q′ means that when event σ occurs at state q, state
transitions to a new state q′. It is worth noting that in general δ
is not defined for every pair (q, σ) in the domain Q × Σ, so as a
function δ is only partial. We say that δ : Q× Σ→ Q is a partial
state transition function, and write

δ(q, σ)!

to mean that δ is defined for the pair (q, σ), while ¬δ(q, σ)! other-
wise.
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In Example 1.1, the state transition function is as follows:

δ(0, start)! & δ(0, start) = 1

δ(1, auto_finish)! & δ(1, auto_finish) = 0

δ(1,manual_stop)! & δ(1,manual_stop) = 0

δ(1,breakdown)! & δ(1,breakdown) = 2

δ(2,fix)! & δ(2,fix) = 0

On the other hand, the following are three examples of δ

not being defined:

¬δ(0,breakdown)!, ¬δ(1, start)!, ¬δ(2, auto_finish)!

The partial state transition function in Example 1.2 is sim-
ilar and left as an exercise to the reader.

Now that we know how to use the state transition function δ

to describe one-step transitions, we can composite function δ to
describe multi-step transitions. Say we have

δ(q1, σ1)! & δ(q1, σ1) = q2

δ(q2, σ2)! & δ(q2, σ2) = q3

δ(q3, σ3)! & δ(q3, σ3) = q4

Then the following is a three-step transition:

δ(δ(δ(q1, σ1), σ2), σ3) = q4

More compactly, it is convenient to have a transition function δ̂ to
represent the above by writing

δ̂(q1, σ1σ2σ3)! & δ̂(q1, σ1σ2σ3) = q4
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Here the sequence of events “σ1σ2σ3” is called a string. In general,
a string s on the event set Σ is a sequence of finite number of
events in Σ. The length of string s, written |s|, is the number of
constituent events. Thus the length of an arbitrary string is finite,
though there is no bound for the length.

Now let’s denote by Σ+ the set of all strings on Σ, namely

Σ+ = {σ1 · · ·σk | k ≥ 1 is finite & (∀i ∈ [1, k])σi ∈ Σ}

Additionally bring in a special empty string ϵ which contains no
event. Thus ϵ /∈ Σ+ and |s| = 0. Define

Σ∗ = {ϵ} ∪ Σ+

Thus Σ∗ consists of all strings including the empty string (and is
known as the kleene closure).

Now let’s extend the state transition function δ : Q × Σ → Q

to

δ̂ : Q× Σ∗ → Q

First we need

(∀q ∈ Q)δ̂(q, ϵ)! & δ̂(q, ϵ) = q (1.3)

This means that the empty string ϵ is defined at every state q; since
ϵ physically means ‘doing nothing’, its occurrence trivially makes
no state transition (you may imagine there is a virtual ϵ-selfloop
at every state). Next, we require inductively

(∀q ∈ Q,∀s ∈ Σ∗,∀σ ∈ Σ)δ̂(q, s)! & δ(δ̂(q, s), σ)!⇒ δ̂(q, sσ)!

(1.4)

In words, whenever a string is defined at a state (i.e. δ̂(q, s)!) and
an event is defined following that string (i.e. δ(δ̂(q, s), σ)!), the new
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string sσ (catenation of s and σ) is defined at state q.
The above (1.3) and (1.4) define the extended transition func-

tion δ̂, which can be used to describe multi-step state transitions,
including the trivial zero-step transition by the empty string ϵ. As
being extended based on the partial transition function δ, here δ̂ is
also partial and we write δ̂(q, s)! to mean that δ̂ is defined for the
pair (q, s) and ¬δ̂(q, s)! otherwise. Henceforth for convenience, we
will drop theˆfrom δ̂ and simply write δ : Q× Σ∗ → Q.

In Example 1.1, the following are instances of the extended
state transition function:

δ(0, ϵ)! & δ(0, ϵ) = 0

δ(0, start.auto_finish)! & δ(0, start.auto_finish) = 0

δ(1,breakdown.fix.start)! & δ(1,breakdown.fix.start) = 1

δ(2,fix)! & δ(2,fix) = 0

A few examples of δ not being defined are as follows:

¬δ(0,manual_stop.start)!

¬δ(1,breakdown.start)!

¬δ(2,breakdown)!

The reader is invited to write instances of the extended
state transition function in Example 1.2.

1.4 Automaton as dynamic system

With the state set Q and the (extended) state transition function
δ, an automaton is a dynamic system whose state changes in Q are
described using δ.

Given an automaton A = (Q,Σ, δ, q0, Qm), its working mech-
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Figure 1.4: Automaton as dynamic system

anism can be visualized in Fig. 1.4. All dynamics starts from the
initial state q0. Upon an occurrence of an event σ1 ∈ Σ defined at
q0, the state transits to the next q1 = δ(q0, σ1). Then at q1, if an-
other event σ2 ∈ Σ occurs, this causes another state transition to
q2 = δ(q1, σ2). Evolving in this fashion, a sequence of state transi-
tions occurs, which can be identified by a string s = σ1σ2 · · · ∈ Σ∗

that causes these transitions. This sequence of state transitions
starting from the initial state q0 is a trajectory of the automaton.
The collection of all possible trajectories of the automaton is writ-
ten

L(A) := {s ∈ Σ∗ | δ(q0, s)!} (1.5)

We call L(A) the closed behavior of A, which includes all possible
dynamics of the automaton.

If a trajectory ends at a marker state in Qm, then this tra-
jectory is considered as a good or desired one. We can imagine
that there is a bell attached to the automaton, which beeps when-
ever a trajectory hits a marker state. The collection of all good
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trajectories is written

Lm(A) := {s ∈ L(A) | δ(q0, s) ∈ Qm} (1.6)

Thus Lm(A) is a subcollection of the closed behavior, and we call
it the marked behavior of A.

In Example 1.1, the automaton’s trajectories are e.g.

ϵ, start, start.auto_finish, start.breakdown,

start.breakdown.fix, start.breakdown.fix.start

All these trajectories are in the closed behavior of the au-
tomaton, but not all are in the marked behavior: the tra-
jectory start.breakdown does not hit a marker state, so it
is not in the marked behavior of the automaton.
For the automaton in Example 1.2, the reader is invited to
write three trajectories which are in both the closed behav-
ior and the marked behavior, while another three trajecto-
ries in the closed behavior but not in the marked behavior.

1.5 PyTCT

PyTCT is a python version of the TCT software package.1 Com-
pared to TCT, PyTCT allows OS-independent installation, writing
scripts, and using vast libraries in python whenever needed.

In this section, we use PyTCT to create an automaton, display
it, and simulate its trajectories. We start with the following two
lines of codes, which should be included at the top of every script.

1 import pytct #import pytct package
2

3 pytct.init('xxx') #create a working folder

1https://www.control.utoronto.ca/~wonham/TCTX64_20210701.rar

https://www.control.utoronto.ca/~wonham/TCTX64_20210701.rar
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The first line imports the PyTCT package. Then a working
folder “xxx” (insert any name) is created by the init function to
save all computation results. Optionally the following allows over-
writing a created folder.

1 pytct.init('xxx', overwrite=True)
2 #allow overwriting a created working folder

In PyTCT, an automaton is created using the create function.
To use this function, three elements need to be specified.

• State number: the number of states of the automaton to be
created. Once a state number n(≥ 1) is given, all the states
are sequentially labeled from 0 to n− 1. The initial state is
labeled 0.

• Set of state stransitions: all the transition triples of the au-
tomaton. For the event labels, two formats are permitted: (i)
strings like ‘start’, ‘finish’ (with single quotes); (ii) natural
numbers like 0, 15 (without single quotes). Two formats are
not allowed to be mixed in the same script.

• Set of marker states: a subset of the state set {0, . . . , n− 1}
that is marked.

Let’s create the automaton of the printer in Fig. 1.1.
1 statenum=3 #number of states
2 #states are sequentially labeled 0,1,...,statenum
3 #initial state is labeled 0
4

5 trans=[(0,'start',1),
6 (1,'auto_finish',0),
7 (1,'manual_stop',0),
8 (1,'breakdown',2),
9 (2,'fix',0)] # set of transitions

10 #each triple is (exit state, event label, entering state)
11

12 marker = [0,1] #set of marker states
13

14 pytct.create('PRINTER', statenum , trans, marker)
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15 #create automaton PRINTER

The last line of code above uses the create function, which has
four inputs: (i) name of the automaton to be created (a string in
single quotes), (ii) state number, (iii) set of transitions, and (iv) set
of marker states. This function creates an automaton PRINTER,
which is saved as “PRINTER.DES” in the folder “xxx”. The au-
tomaton can be visualized using the display_automaton func-
tion below (for this display, the package graphviz is used).

1 pytct.display_automaton('PRINTER')
2 #plot PRINTER.DES

Figure 1.5: PyTCT plot of automaton

The above generates the plot of the automaton PRINTER in
Fig. 1.5. It is easily inspected that this automaton is the same as
the one in Fig. 1.1.

For a given automaton A (file “A.DES” in folder “xxx”), the
following functions are handy to obtain the key information of the
automaton.

1 pytct.statenum('A') #state number of A.DES
2

3 pytct.events('A') #events of A.DES
4

5 pytct.trans('A') #state transitions of A.DES
6

7 pytct.marker('A') #marker states of A.DES

Given an automaton A and a string s ∈ L(A), the corre-
sponding state trajectory can be generated by function simu-
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late_automaton. The code for automaton PRINTER and a
string start.breakdown.fix is as follows. The result is (0,1,2,0).

1 pytct.simulate_automaton('PRINTER',['start','breakdown','
fix'])

2 #simulate PRINTER.DES with a string

One can also randomly sample a given automaton with a string
of a specified length. The following code is to sample automaton
PRINTER with a string of length 5. Each execution may generate
a different state trajectory, as there is more than one string of
length 5 from the initial state.

1 pytct.sample_automaton('PRINTER',5])
2 #sample PRINTER.DES with a string of length 5

The reader is invited to install PyTCT or log into our Jupyter
Hub and try all the above introduced functions for the warehouse
robot example in Fig. 1.3.
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Chapter 2

Trim An Automaton

2.1 Reachable
Given an automaton A, we introduce reachability of its states from
the initial state.

0

1 3

2

5

4
move right

move right

move right

move up move up move down move down

Figure 2.1: Warehouse robot revised: transition to human station
removed

Example 2.1 As displayed in Fig. 2.1, consider a revised
version of the warehouse robot automaton, where a transi-
tion from state 3 to state 5 is removed. Namely, there is
no movement of the robot from the storage shelf area to the
human worker station (say blocked by a door). Let’s inspect
which states can be reached from the initial state 0, via a
sequence of actions (i.e. a string).

27
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• state 0: (trivially) reachable from 0 via the empty
string ϵ

• state 1: reachable from 0 via string move_up

• state 2: reachable from 0 via e.g. string move_right
or string move_up.move_right.move_down

• state 3: reachable from 0 via e.g. string move_right.
move_up or string move_up.move_right

• state 4: reachable from 0 via e.g. string move_right.
move_right or string move_up.move_right.
move_down.move_right

• state 5: not reachable from 0

Therefore in this revised robot automaton, except for state
5, all the other states are reachable from the initial state 0.

Given an automaton A = (Q,Σ, δ, q0, Qm), we say that a state
q ∈ Q is reachable (from the initial state q0) if there exists a string
s defined at q0 that reaches q, i.e.

(∃s ∈ L(A))δ(q0, s)! & δ(q0, s) = q

Thus a reachable state is one that a trajectory of the automaton
can visit. Now let

R(Q) := {q ∈ Q | q is reachable} ⊆ Q

be the subset of all reachable states. We say that the automaton A
is reachable if R(Q) = Q, i.e. every state in Q can be visited. Thus
the automaton in Example 2.1 is not reachable, becauseR(Q) ⫋ Q.
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0

1 2

start

breakdown

fixmanual stop

auto finish,

“IDLE”

“WORKING” “BROKEN”

3

“JUNK”

dump

Figure 2.2: Printer revised: junk state added

Example 2.2 Let’s consider another example (Fig. 2.2),
which is a revised version of the printer automaton with a
new state 3 and transition (2,dump,3) added. Namely, the
printer once (severely) broken may be directly dumped. In
this automaton, inspect that every state is reachable (from
the initial state 0). Hence the automaton itself is reachable.

The reader is invited to work out the details of the above ex-
ample (as done in Example 2.1) the reachability of every state to
confirm that the revised printer automaton is indeed reachable.

2.2 Coreachable

A concept dual to reachability is coreachability. Given an automa-
ton A = (Q,Σ, δ, q0, Qm), we say that a state q ∈ Q is coreachable
(with respect to the marker state set Qm) if there exists a string s

defined at q that reaches a state in Qm, i.e.

(∃s ∈ Σ∗)δ(q, s)! & δ(q, s) ∈ Qm
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Thus a coreachable state has at least one trajectory to reach a
marker state. Let

CR(Q) := {q ∈ Q | q is coreachable} ⊆ Q

be the subset of all coreachable states. This is the set of states
from which the marker state set Qm can be visited. We say that
the automaton A is coreachable if every state in Q is reachable, i.e.
CR(Q) = Q.

The revised printer automaton in Example 2.2 is not core-
achable because CR(Q) ⫋ Q. Let’s inspect which states are
coreachable and which are not, with respect to the marker
state set Qm = {0, 1}.

• state 0: coreachable via e.g. the empty string ϵ or
string start

• state 1: coreachable via e.g. the empty string ϵ or
string auto_finish or string manual_stop

• state 2: coreachable via e.g. string fix

• state 3: not coreachable

Since not all the states are coreachable, this automaton is
not coreachable.

In Example 2.1, inspect that every state is coreachable, in-
cluding the non-reachable state 5. Therefore this revised
robot automaton is coreachable.

The reader is invited to work out the details of the above exam-
ple on the coreachability of every state to confirm that the revised
robot automaton is indeed coreachable.
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2.3 Nonblocking

From systems design point of view, it is desired that every reach-
able state be coreachable, so that wherever the system visits there
is always a path to a marker state. This leads to the definition of
nonblocking automaton.

Given an automaton A = (Q,Σ, δ, q0, Qm), we say that A is
nonblocking if

(∀q ∈ Q)q is reachable⇒ q is coreachable

Thus in a nonblocking automaton, every reachable state is also
coreachable. That is,R(Q) ⊆ CR(Q) (reachable part of automaton
A be coreachable). In the special case where A is reachable (i.e.
R(Q) = Q), then nonblocking is equivalent to coreachable (i.e.
CR(Q) = Q).

Note that the above definition is concerned only with reachable
states. Thus a nonblocking automaton may contain non-reachable
states. This is reasonable because if a state is not even reachable,
it does not play any significant role whatsoever.

Note also that a coreachable automaton is nonblocking (triv-
ially so because the right-hand side of the implication always holds).
However a reachable automaton need not be nonblocking.

Finally, the definition of nonblocking is with regard to a given
automaton, but not with regard to an individual state. This is
different from previously introduced reachable/coreachbale states.
Nevertheless one may define a blocking state as follows. For a given
state q ∈ Q, we say that q is blocking if

q is reachable & q is not coreachable

Such a blocking state q, whenever visited, has no hope of getting
to any marker state. An automaton is blocking if it contains a
blocking state. A special blocking state q is called a deadlock state
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if no event is defined at q, i.e.

q is blocking & (∀σ ∈ Σ)¬δ(q, σ)!

The revised robot automaton in Example 2.1 is nonblocking
because it is coreachable.
On the other hand, the revised printer automaton in Exam-
ple 2.2 is blocking because state 3 (“JUNK”) is a blocking
state (indeed a deadlock state).

2.4 Trim
A nonblocking automaton without nonreachable states is called a
trim automaton. Given an automaton A = (Q,Σ, δ, q0, Qm), we
say that A is trim if

(∀q ∈ Q)q is reachable & q is coreachable

Namely in a trim automaton, every state is both reachable and
coreachable, i.e. R(Q) = CR(Q) = Q.

By definition a trim automaton is nonblocking, but the reverse
need not true. For the reverse to be true, reachability needs to
be added. That is, if an automaton is nonblocking and reachable,
then it is trim.

To transform a nontrim automaton into a trim automaton, one
simply need to remove all nonreachable and noncoreachable states
and the associated transitions. As a result, a trim automaton is
both reachable and coreachable.

The revised robot automaton in Example 2.1 is nonblocking
but not trim, for state 5 is not reachable. To make this
automaton trim, one removes state 5 and the associated



2.5. Behavioral characterization 33

transition (5, move_down, 4).
Neither is the revised printer automaton in Example 2.2
trim, because state 3 is not coreachable. To make this
automaton trim, one removes state 3 and the associated
transition (2, dump, 3).

2.5 Behavioral characterization
Recall from Section 1.4 that an automaton A = (Q,Σ, δ, q0, Qm)

(as a dynamic system) has two types of behaviors: Closed behavior

L(A) := {s ∈ Σ∗ | δ(q0, s)!}

is the set of all trajectories of A starting from the initial state q0,
and marked behavior

Lm(A) := {s ∈ L(A) | δ(q0, s) ∈ Qm}

the subset of trajectories of A that can hit a marker state in Qm.
These two behaviors provide alternative descriptions of the prop-
erties introduced in the previous sections of this chapter: reacha-
bility, coreachability, nonblocking, and trim. For that, we bring in
two additional concepts.

The first concept is an extension of L(A) from regarding the
initial state q0 to regarding an arbitrary state q ∈ Q. For q ∈ Q

let

L(A, q) := {s ∈ Σ∗ | δ(q, s)!}

Thus L(A, q) is the set of all trajectories starting from state q.
The second concept is closure of behavior. Given a behavior L

(i.e. language), let s ∈ L be an arbitrary trajectory (i.e. string).
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Write

s := {s′ | (∃t)s′t = s}

Namely s is the set of all (history) trajectories that can be extended
to s itself. Note that the empty string ϵ and s itself belong to s.
Now define the closure of L by

L := {s | s ∈ L}

Thus L is the set of all history trajectories of its elements. By
the definitions of the closed behaviors L(A) and L(A, q), every
trajectory s inside also has its history trajectories inside, hence

L(A) = L(A), L(A, q) = L(A, q)

This is not the case, however, for the marked behavior Lm(A) be-
cause a trajectory hitting a marker state does not mean its history
trajectories can also hit a marker state. Therefore

Lm(A) ⊆ Lm(A)

With the above two new concepts introduced, we present the
behavioral characterizations of reachability, coreachability, non-
blocking, and trim.

Automaton A is

• reachable if and only if for every state q ∈ Q,

(∃s ∈ L(A))q = δ(q0, s)

• coreachable if and only if for every state q ∈ Q,

(∃qm ∈ Qm)(∃s ∈ L(A, q))qm = δ(q, s)
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• nonblocking if and only if

Lm(A) = L(A)

(namely every trajectory in L(A) can be extended to a tra-
jectory to hit a marker state)

• trim if and only if

A is reachable & Lm(A) = L(A)

2.6 PyTCT
Let’s create the revised printer automaton in Example 2.2. Call
this automaton PRINTER_JUNK, created and displayed below.

1 import pytct #import pytct package
2

3 pytct.init('RevisedPrinter') #create a working folder
4

5 statenum=4 #number of states
6 #states are sequentially labeled 0,1,...,statenum
7 #initial state is labeled 0
8

9 trans=[(0,'start',1),
10 (1,'auto_finish',0),
11 (1,'manual_stop',0),
12 (1,'breakdown',2),
13 (2,'dump',3)
14 (2,'fix',0)] # set of transitions
15 #each triple is (exit state, event label, entering state)
16

17 marker = [0,1] #set of marker states
18

19 pytct.create('PRINTER_JUNK', statenum , trans, marker)
20 #create automaton PRINTER_JUNK
21

22 pytct.display_automaton('PRINTER_JUNK')
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23 #plot PRINTER_JUNK.DES

Figure 2.3: PyTCT plot of automaton PRINTER_JUNK

As is seen in Fig. 2.3, the added new state is 3 with the associ-
ated new transition (2,dump,3).

Now let’s check the reachability, coreachability, nonblocking,
and trim properties of automaton PRINTER_JUNK. First the
function below checks reachability of the automaton. The result is
true.

1 pytct.is_reachable('PRINTER_JUNK')
2 #check if PRINTER_JUNK is reachable

One can also check the reachability of an individual state. The
following code checks if state 3 in PRINTER_JUNK is reachable.
The result is true.

1 pytct.is_reachable('PRINTER_JUNK',3)
2 #check if state 3 in PRINTER_JUNK is reachable

In addition, if a state is reachable, a (shortest) string reaching
the state from the initial state can be generated by the following
function. The result is (start, breakdown, junk).

1 pytct.reachable_string('PRINTER_JUNK', 3)
2 #generate a string to the reachable state

The same set of the above three functions is also available for
checking coreachability. First the function below checks coreacha-
bility of automaton PRINTER_JUNK. The result is false.

1 pytct.is_coreachable('PRINTER_JUNK')
2 #check if PRINTER_JUNK is coreachable
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Coreachability of individual states can be checked as follows.
For state 2, it is coreachable; while for state 3, it is not coreachable,
and this is the reason why the automaton is not coreachable.

1 pytct.is_coreachable('PRINTER_JUNK',2)
2 #check if state 2 in PRINTER_JUNK is coreachable
3

4 pytct.is_coreachable('PRINTER_JUNK',3)
5 #check if state 3 in PRINTER_JUNK is coreachable

Finally, for a coreachable state, a (shortest) string from the
state to a marker state can be generated by the following function.
The result for state 2 is (fix).

1 pytct.coreachable_string('PRINTER_JUNK', 2)
2 #generate a string from the reachable state to a marker

state

For a small automaton (with a handful of states), it is conve-
nient to list out reachability and coreachability of all individual
states. This can be done by the following code using a for-loop.

1 for i in range(statenum):
2 print(f"state {i}: reachable -> {pytct.is_reachable('

PRINTER_JUNK', i)}")
3 print(f"state {i}: coreachable -> {pytct.is_coreachable

('PRINTER_JUNK', i)}")
4 #list reachability and coreachability of individual states

It is sometimes convenient to know a shortest string from an
arbitrary state (which need not be the initial state) to another
(reachable) state. The following function does so.

1 pytct.shortest_string('PRINTER_JUNK', 1, 3)
2 #generate a string from state 1 to state 3

Now let’s move on to check nonblocking and trim properties.
For nonblocking of automaton PRINTER_JUNK, the function be-
low verifies that it is not, namely the automaton is blocking.

1 pytct.is_nonblocking('PRINTER_JUNK')
2 #check if PRINTER_JUNK is nonblocking
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For a blocking automaton, the following function generates the
set of all blocking states (which are reachable but not coreachable).
For PRINTER_JUNK, the result is 3. That is, the newly added
state is the blocking state, as from this (JUNK) state there is no
path back to any marker state.

1 pytct.blocking_states('PRINTER_JUNK')
2 #generate all blocking states in PRINTER_JUNK

Finally, the following function checks if PRINTER_JUNK is
trim. The result is False.

1 pytct.is_trim('PRINTER_JUNK')
2 #check if PRINTER_JUNK is trim

To convert a nontrim automaton to a trim automaton, the func-
tion below is used.

1 pytct.trim('PRINTER_TRIM','PRINTER_JUNK')
2 #trim an automaton
3

4 pytct.display_automaton('PRINTER_TRIM')
5 #plot PRINTER_TRIM.DES

The resulting trim automaton PRINTER_TRIM is displayed
in Fig. 2.4. Observe that PRINTER_TRIM is the same automaton
as PRINTER in the previous chapter, and resulted by removing
from PRINTER_JUNK the newly added state and transition.

Figure 2.4: PyTCT plot of automaton PRINTER_TRIM

The reader is invited to work out all the above introduced func-
tions for the revised robot automaton in Fig. 2.1.



Chapter 3

Multiply Two
Automata

3.1 Intuition
A ‘big’ automaton may be formed by product of ‘smaller’ automata.
Consider two automata A1 and A2, whose event sets are Σ1 and
Σ2 respectively. In general, Σ1 and Σ2 can share some events in
common (i.e. Σ1 ∩ Σ2 ̸= ∅), and also have distinct nonshared
events (i.e. Σ1 ̸= Σ2). The product of A1 and A2 should enforce
synchronization on executing their shared events, while allow free
execution of their distinct events. This is synchronous product of
automata. Before the formal definition, let’s look at an example.

Example 3.1 Consider a printer automaton displayed on
the left of Fig. 3.1 (the same one as that in Fig. 1.1). Also
consider a user of this printer (think of your own experi-
ence). A user can start a printing job, manually stop the
job in process, and when the job finishes successfully, take
the printouts. This is modeled by the automaton USER
displayed on the right of Fig. 3.1. As expressed in this
automaton, once the event auto_finish occurs (the automa-
ton reaches state 1), user only takes printouts (i.e. event
take_printouts) before s/he can start or manually stop a
printing job again.
Observe that these two automata share the following events

39
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in common: start, manual_stop, auto_finish. On the
other hand, the events breakdown and fix belong only to
PRINTER, while the event take_printouts belong only to
USER.

0

1 2

start

breakdown

fixmanual stop

auto finish,

PRINTER

0 1
auto finish

take printouts

start,
manual stop

USER

Figure 3.1: Automaton of a printer and automaton of a user

Now let’s consider what events these two automata can ex-
ecute together, while others independently. The rule is, a
shared event must be executed together, while a nonshared
event can be executed by the owner automaton alone. Let’s
start from the initial states of both automata, i.e. the
state pair (0,0). PRINTER can execute only one event
start, whereas USER can execute start, manual_stop, or
auto_finish. Thus at (0,0), the shared event start is exe-
cuted together, which leads to a new state pair (1,0) (be-
cause PRINTER transitions to state 1 and USER selfloops
at state 0). This is depicted in Fig. 3.2.
Note that USER cannot execute two other events man-
ual_stop or auto_finish, since these two events are shared
by PRINTER and cannot be executed by PRINTER at its
state 0. Thus what is depicted in Fig. 3.2 is all that can
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occur at the initial state pair (0,0), and (1,0) is the sole new
state pair.

start
(0, 0) (1, 0)

Figure 3.2: Synchronous product of PRINTER and USER: step 1

Next we consider the new state pair (1,0). By inspection
we see that there are three events that can be executed
at (1,0): manual_stop, auto_finish (shared and executable
by PRINTER and USER), and breakdown (nonshared and
executable by the owner PRINTER). Note that although
the shared event start can be executed by USER, it cannot
be executed by PRINTER, as a result start cannot occur
at (1,0). The execution of manual_stop, auto_finish, or
breakdown leads respectively to (0,0), (0,1), or (2,0); the
latter two are new state pairs. This is displayed in Fig. 3.3.

start

manual stop auto finish

(0, 0) (1, 0)

(0, 1)

(2, 0)

breakdown

Figure 3.3: Synchronous product of PRINTER and USER: step 2



42 Chapter 3. Multiply Two Automata

Now that there are two new state pairs (0,1) and (2,0), we
consider them in order. First for (0,1), the only event that
can occur is the nonshared event take_printouts (the shared
event start cannot occur because it cannot be executed by
USER). Execution of take_printouts returns to the initial
(0,0). Second for (2,0), since PRINTER cannot execute
any shared event, again no shared event can occur. The
only event that can occur is the nonshared fix, which can
be executed by PRINTER and returns to the initial (0,0).
This step is displayed in Fig. 3.4.
Since no more new state pairs are obtained, this construc-
tion process ends. Note that among all possible six pairs,
only four appear (and the rest two are nonreachable). We
end this example by remarking that the marker state pairs
of the resulting product automaton are (0,0) and (1,0), be-
cause the components are marker states of the respective
automata PRINTER and USER.

start

manual stop auto finish

(0, 0) (1, 0)

(0, 1)

(2, 0)

breakdown
fix

take printouts

Figure 3.4: Synchronous product of PRINTER and USER: step 3
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3.2 Definition

From the example in the preceding section, the synchronous prod-
uct of two automata is another automaton, whose states are pairs
of states of the component automata and whose transitions en-
force synchronization on shared events, while allow occurrences of
nonshared events. We present the mathematical definition below.

Let Ai := (Qi,Σi, δi, q0,i, Qm,i), i = 1, 2, be two automata.
Their synchronous product , written A1||A2, is a new automaton

A1||A2 = A = (Q,Σ, δ, q0, Qm)

whose elements are defined as follows.

• State set Q is the cartesian product of Q1 and Q2:

Q = Q1 ×Q2 = {(q1, q2) | q1 ∈ Q1, q2 ∈ Q2}

which consists of pairs of states from A1 and A2.

• Event set Σ is the union of that A1 and A2:

Σ = Σ1 ∪ Σ2

Note that Σ1 and Σ2 do not have any special relations.

• State transition function δ : Q × Σ → Q is as follows: Let
q = (q1, q2) ∈ Q and σ ∈ Σ1 ∪ Σ2. There are four cases.

Case 1 : if σ ∈ Σ1 \ Σ2 and δ1(q1, σ)! (i.e. σ is a nonshared
event that can be executed by A1 at q1), then

δ(q, σ) = q′ = (δ1(q1, σ), q2)

Namely A1 makes a state transition by executing σ

while A2 stays put.
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Case 2 : if σ ∈ Σ2 \ Σ1 and δ2(q1, σ)! (i.e. symmetric case
to Case 1 where σ is a nonshared event that can be
executed by A2 at q2), then

δ(q, σ) = q′ = (q1, δ2(q2, σ))

Namely A1 stays put while A2 makes a state transition
by executing σ.

Case 3 : if σ ∈ Σ1 ∩ Σ2, δ1(q1, σ)!, and δ2(q2, σ)! (i.e. σ is a
shared event that can be executed by A1 at q1 and by
A2 at q2), then

δ(q, σ) = q′ = (δ1(q1, σ), δ2(q2, σ))

That is, both A1 and A2 make a state transition by
simultaneously executing σ.

Case 4 : in all other cases (i.e. either σ is a shared event
but cannot be executed together, or σ is a nonshared
event but cannot be executed by the owner automaton),
δ(q, σ) is not defined.

• Initial state q0 = (q0,1, q0,2).

• Marker state set Qm = Qm,1 × Qm,2 = {(qm,1, qm,2) ∈ Q |
qm,1 ∈ Qm,1, qm,2 ∈ Qm,2}.

In Example 3.1, the synchronous product of PRINTER and
USER is an automaton A = (Q,Σ, δ, q0, Qm) whose ele-
ments are:

• Q = {0, 1, 2} × {0, 1}

• Σ = {start,manual_stop, auto_finish,breakdown,fix}∪
{start,manual_stop, auto_finish, take_printouts}

• δ : Q× Σ→ Q
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• q0 = (0, 0)

• Qm = {0, 1} × {0}

Thus the automaton displayed in Fig. 3.4 is the trimmed
version of A (by removing the two non-reachable states
(1,1) and (2,1)).

Special case: Σ1 = Σ2

In this case, all events are shared, so Case 1 and Case 2 of
the state transition function δ above do not exist. Let’s see an
example.

Example 3.2 Consider the two automata displayed in
Fig. 3.5. Note that Σ1 = Σ2 = {α}. The reader is in-
vited to work out their synchronous product.

0

1 2

α

A1

0 1

A2

α

α

α

α

Figure 3.5: Synchronous product when all events are shared

In fact whenever Σ1 ̸= Σ2 (which is generally the case), we can
always ‘add’ those events only in Σ2 but not in Σ1 to A1 (and
symmetrically ‘add’ those events only in Σ1 but not in Σ2 to A2),
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such that the new A1 and A2 are both defined on the same event
set Σ1 ∪ Σ2.

But how to ‘add’ events in Σ2 \ Σ1 to A1 without affecting
the rules of synchronous product? According to Case 2 of the
definition, these events should be allowed anywhere in A1 and
anytime occurrence. According to this, we add events in Σ2 \ Σ1

as selfloops at every state in A1. We denote the new automaton
by

SA1 := selfloop(A1,Σ2 \ Σ1)

Symmetrically, we selfloop all events in Σ1 \ Σ2 at every state in
A2, and denote the outcome by

SA2 := selfloop(A2,Σ1 \ Σ2)

Now both SA1 and SA2 are defined on the same event set Σ∪Σ2.
Based on the defining rules of synchronous product, the following
holds:

A1||A2 = SA1||SA2

0

1 2

start

breakdown

fixmanual stop
auto finish,

selfloop(PRINTER, {take printouts})

0 1
auto finish

take printouts

start,
manual stop

selfloop(USER, {breakdown, fix})

breakdown,
fix,

breakdown,
fix,

take printouts

take printouts take printouts

Figure 3.6: Selflooped automata of a printer and automaton of a
user
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In Example 3.1, the automata PRINTER and USER have
different event sets. Selflooping the respective missing
events, we obtain the selflooped automata as displayed in
Fig. 3.6. The reader is invited to verify that the syn-
chronous product of the two automata (after adding re-
spective selfloops) is the same as the result in Fig. 3.4.

Special case: Σ1 ∩ Σ2 = ∅

In this case, no event is shared, so Case 3 of the state transition
function δ does not exist. Below is an example to illustrate this
case.

Example 3.3 Consider the two automata displayed in
Fig. 3.7. Note that Σ1 and Σ2 have no event in common.
The reader is invited to work out their synchronous product.

0 1

A2

α2

β2

0 1

A1

α1

β1

Figure 3.7: Synchronous product when all events are nonshared

We end this section by noting that the synchronous product of
three automata A1, A2, A3 can be done as (A1||A2)||A3, which
is in fact the same as A1||(A2||A3) (the reader is invited to check
this fact). Namely the synchronous product is associative:

(A1||A2)||A3 = A1||(A2||A3)

Hence for convenience we write A1||A2||A3 without brackets. This
extends to synchronous product of any finite number of automata.
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3.3 Synchronously nonconflicting
The synchronous product of two nonblocking automata may be
blocking, as illustrated in the example below.

Example 3.4 Consider the two nonblocking automata A1,
A2 displayed in Fig. 3.8. At the state pair (0,0), neither
the shared event β nor γ can occur because they cannot be
executed together. Hence the synchronous product A1||A2

has only the initial state (0,0), with the nonshared events
α1, α2 defined (see Fig. 3.8). Note, however, that A1||A2

is blocking since the initial state (0,0) cannot reach any
marker state (which does not exist in A1||A2).

0 1

β

α1

A1 2

γ

0 1

γ

α2

A2 2

β

A1||A2 0

α1,α2

Figure 3.8: Synchronous product of two nonblocking automata fails
to be nonblocking

In view of this example, we say that two (nonblocking) au-
tomata A1 and A2 are synchronously nonconflicting if their syn-



3.4. Behavior of synchronous product 49

chronous product A1||A2 is nonblocking; otherwise we say that
A1 and A2 are conflicting. Thus the two automata in Example 3.4
are conflicting, whereas the two in Example 3.1 are synchronously
nonconflicting.

Note from Example 3.4 that synchronously conflicting occurs
when two automata try to execute two (or more) shared events in
different orders. Thus if two automata have no or only one event in
common, then they are necessarily synchronously nonconflicting.

3.4 Behavior of synchronous product

In this section, we discuss what the behavior is the synchronous
product A = A1||A2 in terms of the behaviors of A1 and A2.

Let Ai := (Qi,Σi, δi, q0,i, Qm,i), i = 1, 2, and their synchronous
product A = (Q,Σ, δ, q0, Qm). We start from the special case Σ1 =

Σ2. Thus only Case 3 and Case 4 in the definition of synchronous
product exist. By these two cases we have

L(A) = {s ∈ Σ∗ | δ(q0, s)!}

= {s ∈ Σ∗ | δ1(q0,1, s)! & δ2(q0,2, s)!}

= {s ∈ Σ∗ | δ1(q0,1, s)!} ∩ {s ∈ Σ∗ | δ2(q0,2, s)!}

= L(A1) ∩ L(A2)

Moreover,

Lm(A) = {s ∈ L(A) | δ(q0, s) ∈ Qm}

= {s ∈ Σ∗ | δ1(q0,1, s) ∈ Qm,1 & δ2(q0,2, s) ∈ Qm,2}

= {s ∈ Σ∗ | δ1(q0,1, s) ∈ Qm,1} ∩ {s ∈ Σ∗ | δ2(q0,2, s) ∈ Qm,2}

= Lm(A1) ∩ Lm(A2)
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Consider again Example 3.2, where A1 and A2 are dis-
played in Fig. 3.5. Note that

Lm(A1) = {α3n | n = 0, 1, . . .}

Lm(A2) = {α2n | n = 0, 1, . . .}

Thus their synchronous product A = A1||A2 satisfies

Lm(A) = Lm(A1) ∩ Lm(A2) = {α6n | n = 0, 1, . . .}

Now consider the case Σ1 ̸= Σ2. As in Section 3.2, we unify
the event sets by selflooping the respectively missing events:

SA1 = selfloop(A1,Σ2 \ Σ1)

SA2 = selfloop(A2,Σ1 \ Σ2)

Now that the event sets of SA1 and SA2 are Σ1 ∪ Σ2, the same
conclusion as above applies. Namely

L(A) = L(A1||A2)

= L(SA1||SA2)

= L(SA1) ∩ L(SA2)

Similarly

Lm(A) = Lm(SA1) ∩ Lm(SA2)

Finally, A1 and A2 are synchronous nonconflicting if and only
if A is nonblocking, i.e.

Lm(SA1) ∩ Lm(SA2) = L(SA1) ∩ L(SA2)
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The reader is invited to verify that in Example 3.4, the
above condition does not hold.

3.5 PyTCT

Let’s consider synchronous product of PRINTER and HUMAN.
First create the automaton of the printer in Fig. 1.5.

1 statenum=3 #number of states
2 #states are sequentially labeled 0,1,...,statenum -1
3 #initial state is labeled 0
4

5 trans=[(0,'start',1),
6 (1,'auto_finish',0),
7 (1,'manual_stop',0),
8 (1,'breakdown',2),
9 (2,'fix',0)] # set of transitions

10 #each triple is (exit state, event label, entering state)
11

12 marker = [0,1] #set of marker states
13

14 pytct.create('PRINTER', statenum , trans, marker)
15 #create automaton PRINTER
16

17 pytct.display_automaton('PRINTER')
18 #plot PRINTER.DES

Figure 3.9: PyTCT plot of automaton PRINTER

Next, we create the automaton of the human in Fig. 3.10.
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1 statenum=2 #number of states
2

3 trans=[(0,'start',0),
4 (0,'auto_finish',1),
5 (0,'manual_stop',0),
6 (1,'take_printouts',0)] # set of transitions
7

8 marker = [0] #set of marker states
9

10 pytct.create('HUMAN', statenum , trans, marker)
11 #create automaton HUMAN
12

13 pytct.display_automaton('HUMAN')
14 #plot HUMAN.DES

Figure 3.10: PyTCT plot of automaton HUMAN

With the two automata PRINTER and HUMAN created, the
following function sync computes their synchronous product. The
resulting automaton PH is displayed in Fig. 3.11.

1 pytct.sync('PH','PRINTER','HUMAN')
2 #synchronous product PH of PRINTER and HUMAN
3

4 pytct.display_automaton('PH')
5 #plot PH.DES

Note that PH in Fig. 3.11 is the same automaton as that in
Fig. 3.4. However, the state numbers are recoded starting from
the initial state 0 and continuing sequentially. To find out which
of these states corresponds to which state pair, and display the
resulting PH with state pairs, the following code may be used.
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Figure 3.11: PyTCT sync of PRINTER and HUMAN

1 table = pytct.sync('PH','PRINTER','HUMAN',table=True,
convert=True)

2 #variant of sync that returns table of state correspondence
3

4 print(table)
5 #print table of state correspondence
6

7 pytct.display_automaton('PH')
8 #plot PH.DES with state pairs

Figure 3.12: PyTCT sync of PRINTER and HUMAN, displaying
state pairs

Now we unify the event sets of PRINTER and HUMAN by
adding selfloops of the respectively distinct events. This is done by
the selfloop function below. The results are displayed in Figs. 3.13
and 3.14

1 pytct.selfloop('PRINTER_SL','PRINTER',['take_printouts'])
2 #selfloop PRINTER with event take_printouts
3

4 pytct.display_automaton('PRINTER_SL')
5 #plot PRINTER_SL.DES
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1 pytct.selfloop('HUMAN_SL','HUMAN',['breakdown ,fix'])
2 #selfloop HUMAN with event breakdown , fix
3

4 pytct.display_automaton('HUMAN_SL')
5 #plot HUMAN_SL.DES

Figure 3.13: PyTCT selfloop for automaton PRINTER

Figure 3.14: PyTCT selfloop for automaton HUMAN

The synchronous product of PRINTER_SL and HUMAN_SL
is the same as the synchronous product of PRINTER and HUMAN
– this is confirmed by the code below. In general, to verify if two
automata are the same (modulo relabeling states and events), we
use the function isomorph.

1 pytct.sync('PH_SL','PRINTER_SL','HUMAN_SL')
2 #synchronous product PH_SL of PRINTER_SL and HUMAN_SL
3

4 pytct.isomorph('PH_SL','PH')
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5 #check if two automata are isomorphic
6 #(modulo relabeling of states and events)

Finally, to check if two automata are synchronously noncon-
flicting, first form their synchronous product and then check if the
result is nonblocking. The following codes returns True, thereby
confirming that PRINTER and HUMAN are synchronously non-
conflicting.

1 pytct.is_nonblocking('PH')
2 #check if PH is nonblocking
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Chapter 4

Close The Loop

4.1 Plant

From this chapter we start to talk about ‘control’. It is customary
to call the discrete-event system to be controlled the ‘plant’, which
is modeled by an automaton1

P = (X,Σ, ξ, x0, Xm)

How the plant can be controlled depends on available technologies.
In the (basic) supervisory control theory, the event set Σ is parti-
tioned into a subset Σc of controllable events and a subset Σu of
uncontrollable events:

Σ = Σc ∪ Σu (Σc ∩ Σu = ∅)

Only the controllable events in Σc can be used as a means of con-
trol. Specifically, a controllable event may be enabled or disabled
by an external controller, called supervisor, in order to achieve
some desired behavior and/or to avoid some unwanted behavior.
On the other hand, an uncontrollable event can never be prevented
from occurring (due to lack of technology), and thus is treated as
being always enabled.

1We consider the automaton nonblocking; if it is not, trim it. We also
change notation for ‘state’ from Q, q0, Qm to X, x0, Xm, in order to make
appearance similar to standard control.

57
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0

1 2

start

breakdown

fixmanual stop

auto finish,

“IDLE”

“WORKING” “BROKEN”

3

“SOLD”

sell

Figure 4.1: Printer with sold state

Example 4.1 Let’s consider the example of printer with a
sold state (Fig. 4.1). In this model, the printer when broken
down may be either fixed or sold. The sold state is a marker
state. Commonsense suggests that the following events be
controllable:

Σc = {start,manual_stop,fix, sell}

while the rest events be uncontrollable:

Σu = {auto_finish,breakdown}

Example 4.2 For the warehouse automation example, if
the robot can move freely from one area to another, then all
the events are controllable (as all movements can be enabled
or disabled).
It may also be a possible scenario where the robot’s move-
ment is controlled by traffic lights (say) installed between
areas: The robot can move from one area to an adjacent
one only when the corresponding light is green (Fig. 4.2).
Thus in this scenario, an event is controllable if and only if
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robot station

human station

drop-off

shelves Ifree space

free spacerobot station0

1

3

2 5

6

destination

routes where robot and human can travel

4

shelves II

Figure 4.2: Warehouse automation with traffic lights for robot
control
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move up
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move down

4

move down

move right u move right c

move right cmove right u

Figure 4.3: Automaton model of warehouse robot controlled by
traffic lights

there is a traffic light for enabling/disabling the correspond-
ing robot’s movement. In Fig. 4.2, there are three traffic



60 Chapter 4. Close The Loop

lights installed on different segments on the routes where
the robot (and the human) can travel. Also note that the
storage shelf area is divided into two subareas to distinguish
the two routes with traffic lights installed in different or-
ders. Accordingly the robot movement can be modeled by
the automaton displayed in Fig. 4.3. The only controllable
events is

Σc = {move_right_c}

which appears in state 1, 2, and 3 corresponding the three
traffic lights. Other events below with no corresponding
traffic light are uncontrollable:

Σu = {move_right_u,move_up,move_down}

4.2 State-based specification

How to control a plant is dependent on what requirements are
imposed on the behavior of the plant. Such control requirements
are customarily called ‘specification’.

In this section, we consider specifications on the states and
state transitions of the plant. Such ‘state-based specification’ is
also modeled by an automaton2

S = (Xs,Σs, ξs, x0, Xs,m)

where Xs ⊆ X, Σs ⊆ Σ, ξs ⊆ ξ, and Xs,m ⊆ Xm. Namely state-
based specification S is a subautomaton of the plant P, obtained
by removing some states and/or transitions which are deemed ‘un-
desirable’ or ‘unsafe’. The initial state S is the same as that of P,

2We consider the automaton nonblocking; if it is not, trim it.
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which should not be removed since otherwise S would be empty.

S1

S2

0

1 2

start

breakdown

fixauto finish

3
sell

0

1

startmanual stop

auto finish,

Figure 4.4: Examples of state-based specifications for printer with
sold state

Let’s consider two examples of state-based specifications
on the printer in Fig. 4.1. The specification automata are
displayed in Fig. 4.4.

• Specification S1 is the same as the printer except for
removing a single state transition (1,manual_stop, 0).
This means that it is desired that the printer is never
stopped manually (which may cause some mechanical
issues).

• Specification S2 is obtained from the printer by re-
moving the state 2 (‘BROKEN’); accordingly transi-



62 Chapter 4. Close The Loop

tions (1,breakdown, 2), (2,fix, 0), (2, sell, 3), and state
3 (‘SOLD’) are all removed. This means that the
printer is desired to never break down (!)

Commonsense suggests that while specification S1 is feasi-
bly enforceable, S2 is unrealistic (at least there is no means
of preventing the uncontrollable ‘breakdown’ event from oc-
curring at state 1). Hence, although specifications can be
imposed as one wishes, whether or not they can be enforced
is case dependent.

0

1

3

2 5

move right c

move up

move up move down

4

move down

move right u

move right cmove right u

S3

Figure 4.5: Example of state-based specification for warehouse
robot with traffic lights

We also provide a state-based specification for the ware-
house robot in Fig. 4.3. Since the states in the robot au-
tomaton carry information of physical locations, specifica-
tions can be imposed on the robot’s locations. Consider
the specification S3 displayed in Fig. 4.5. This automaton
is obtained from the robot by removing the state 6 (human
station), which is deemed unsafe and should be avoided.



4.3. State-feedback supervisory controller 63

Accordingly, all the transitions from or to state 6 are also
removed.

4.3 State-feedback supervisory controller

Given a plant P = (X,Σ, ξ, x0, Xm) with a subset of controllable
events Σc ⊆ Σ, and a state-based specification S = (Xs,Σs, ξs, x0,

Xs,m) (a subautomaton of P), a state-feedback supervisory con-
troller functions to enforce the specification on the behavior of the
plant. Thus the controller is an entity that specifies which control-
lable events should be disabled at each state of the plant in order
to satisfy the specification.

Let 2Σc denote the set of all subsets of Σc (called powerset).
We define state-feedback supervisory controller to be a function

C : X → 2Σc

which maps each state x ∈ X to a subset C(x) of controllable
events to be disabled at x. Specifically which events should be
disabled at x is dependent on the imposed specification S. Note
that by definition, the controller C cannot disable uncontrollable
events.

P

C

x

C(x)

Figure 4.6: State feedback loop
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This supervisory controller C is called ‘state feedback’ because,
first it is a function on the state set X (domain), and second its
evaluation C(·) ∈ 2Σc (codomain) is fed back to influence the be-
havior of the plant. This feedback loop is displayed in Fig. 4.6,
which operates as follows:

• The current state x of plant P is measured.

• Controller C evaluates x and issues a command of disabling
a subset C(x) of controllable events.

• The control command C(x) is fed back to the plant P, and
accordingly P generates the next state x′ by

x′ = ξ(x, σ) if ξ(x, σ)! & σ /∈ C(x). (4.1)

Namely x′ is generated by an event σ that is defined at x in
the plant and is not disabled by the controller.

• The process terminates if the condition in (4.1) is not satis-
fied, i.e. no more event can occur.

Starting from the initial state x0, the above feedback loop generates
a sequence of states:

x0 x1 x2 . . .

We say that the state sequence is generated by the closed-loop
system C/P, where the plant P is under the supervision of the
controller C.

The closed-loop system C/P is itself an automaton (a subau-
tomaton of P), which can generate different state sequences from
the initial state x0, owing to generally multiple events that can
occur at each state. Note that every state sequence generated by
C/P can also be generated by the plant P, but not vice versa.

The purpose of the state-feedback control is to ensure that the
automaton C/P is nonblocking, and every state sequence gener-
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ated by the closed-loop system C/P satisfies the specification S, in
the sense that the same state sequence can be generated by S from
its initial state x0. If C/P does satisfy S, the closed-loop system
can be represented as a subautomaton of S.

Consider the printer with sold state in Fig. 4.1, and speci-
fication S1 in Fig. 4.4. Since S1 only requires removing the
controllable event manual_stop at state 1, the following
controller enforces S1:

C(x) =

{manual_stop} if x = 1

∅ if x = 0, 2, 3

On the other hand, no controller exists to enforce spec-
ification S2 in Fig. 4.4, as controllers cannot disable un-
controllable events (in this case the uncontrollable event
breakdown).

Consider the warehouse robot controlled by traffic lights in
Fig. 4.3, and specification S3 in Fig. 4.5. This specifica-
tion requires that the robot never enters the area of hu-
man station, which can be reached either from state 3 via
move_right_c or from state 4 via move_right_u. While
the event from state 3 is controllable and can be disabled
(switching the corresponding traffic light to red), the event
from state 4 is uncontrollable and thus cannot be prevented
by the controller from occurring. This means that no con-
troller exists to enforce S3.
You may have observed that the entrance to state 4 from
state 1 is via the controllable event move_right_c, so if
a controller can disable move_right_c at state 1 to pre-
vent the robot from ever entering state 4. This in turn
ensures that the robot never enters the area of human sta-
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tion. Hence although there is no controller that can enforce
S3, there does exist a controller that prevents the robot
from entering an unsafe state. This observation is in fact
the topic of optimal supervisory control, which will be in-
troduced in Chapter 6 below.

4.4 Trajectory-feedback supervisory con-
trol

So far in this chapter we have focused on the perspective of state:
state-based specification and state-feedback supervisory control.
In this section we turn to an alternative, and in fact more general,
setting which is in terms of system trajectories and behaviors.

4.4.1 Trajectory-based specificaton

Recall from Section ?? that the plant P = (X,Σ, ξ, x0, Xm) (as a
dynamic system) has two types of behaviors: Closed behavior

L(P) := {s ∈ Σ∗ | ξ(x0, s)!}

is the set of all trajectories of P starting from the initial state x0,
and marked behavior

Lm(P) := {s ∈ L(P) | ξ(x0, s) ∈ Xm}

the subset of trajectories of P that can hit a marker state in Xm.3

Since a control specification imposes requirements on the be-
havior of the plant, we consider a trajectory-based specification

S ⊆ Lm(P).

3As in Section 4.1 we consider P a nonblocking automaton, so Lm(P) =
L(P).



4.4. Trajectory-feedback supervisory control 67

This means that among all trajectories in Lm(P), those in S are
desired ones (while those in Lm(P) \ S are unwanted).

How is such a trajectory-based specification S given? We con-
sider that the desired behavior is described by an automaton E,
which is generally not a subautomaton of the plant P. Thus
Lm(E) ⊆ Σ∗. Then let

S := Lm(E) ∩ Lm(P) ⊆ Lm(P)

Given in this way, every trajectory in S is a requirement on the
feasible behavior of the plant. Recall from Section 3.4 that S is in-
deed the behavior of the synchronous product of E and P: namely
letting S = P||E, we have S = Lm(S).

Note that any state-based specification S can always be ex-
pressed as a trajectory-based specification S := Lm(S), but not
the other way around.

Let’s consider three examples of trajectory-based specifi-
cations on the printer in Fig. 4.1. These specifications
are most conveniently described as languages of automata
(Fig. 4.7).

• Specification S1 = Lm(E1) ∩ Lm(P) means that if
the printer breaks down once, then fix it; and if the
printer breaks down for the second time, sell it. Note
that this specification cannot be expressed as a state-
based specification, as no subautomaton of the plant
can describe this desired behavior.

• Specification S2 = Lm(E2)∩Lm(P) means that no re-
quirement is imposed on the printer, since all events
are always enabled. This automaton is a generic spec-
ification that imposes no constraint on the behavior of
the plant; in particular all controllable events are en-
abled at all times. This specification can be expressed
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breakdown

fix

0 1
breakdown

2

sell

E1

Σ

0E2

Σc
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Σu

start,
auto finish,
manual stop

start,
auto finish,
manual stop,

start,
auto finish,
manual stop,

Figure 4.7: Examples of trajectory-based spec-
ifications for printer with sold state (Σ =
{start,manual_stop, auto_finish,breakdown,fix, sell}, Σc =
{start,manual_stop,fix, sell}, Σu = {auto_finish,breakdown})

as a state-based automaton – simply the plant itself
(no removal of any state or transition).

• Specification S3 = Lm(E3) ∩ Lm(P) means that all
controllable events are disabled, as execution of any
controllable event leads to a blocking state. This au-
tomaton is also a generic specification that disables
all controllable events in the plant at all times. This
specification can be expressed as a state-based au-
tomaton – remove the transition (0, start, 1) in the
plant.
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move right c,
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Figure 4.8: Example of trajectory-based specification for ware-
house robot with traffic lights

We also provide a trajectory-based specification for the
warehouse robot in Fig. 4.3. Note that the two generic
specifications S2 (enabling everything) and S3 (disabling
everything) in Fig. 4.7 apply here as well. Consider the
specification S4 = Lm(E4) ∩ Lm(P), where E4 is displayed
in Fig. 4.8. Specification S4 means that the event move_up
should occur at least once, so that the robot can visit the
shelve area (either state 3 or state 4); in other words,
the robot should not go straight to the drop-off destina-
tion (state 5) without picking up anything from the shelf
area. This specification cannot be expressed as a state-
based specification.

4.4.2 Trajectory-feedback supervisory controller

To enforce S ⊆ Lm(P), we define trajectory-feedback supervisory
controller to be a function

C : L(P)→ 2Σc

which maps each trajectory s ∈ L(P) (generated by the plant)
to a subset C(s) of controllable events to be disabled following s.
Specifically which events should be disabled following s is depen-
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dent on the imposed specification S. Note that by definition, the
controller C cannot disable uncontrollable events. Note also that
this trajectory-based controller is more general than state-based
controller, inasmuch as with the trajectory information, we know
not only which state the plant is at, but also how the plant arrives
at this state.

P

C

s

C(s)

Figure 4.9: Trajectory feedback loop

This supervisory controller C is called ‘trajectory feedback’ be-
cause, first it is a function on the set of all possible trajectories
L(P) (domain), and second its evaluation C(·) ∈ 2Σc (codomain)
is fed back to influence the behavior of the plant. This feedback
loop is displayed in Fig. 4.9, which operates as follows:

• The current trajectory s of plant P is measured.

• Controller C evaluates s and issues a command of disabling
a subset C(s) of controllable events.

• The control command C(s) is fed back to the plant P, and
accordingly P generates the next event σ (so the next new
trajectory sσ is generated) if

sσ ∈ L(P) & σ /∈ C(s). (4.2)

Namely σ is generated if it is defined after s in the plant and
is not disabled by the controller.
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• The process terminates if the condition in (4.2) is not satis-
fied, i.e. no more event can occur.

Starting from the initial empty string ϵ, the above feedback loop
generates a trajectory:

σ1 σ2 σ3 . . .

We say that the trajectory is generated by the closed-loop system
C/P, where the plant P is under the supervision of the controller
C. The closed-loop system C/P can generate different trajectories,
owing to generally multiple events that can occur following each
trajectory. To be precise, the set of all trajectories that can be
generated by the closed-loop system C/P is L(C/P) which satisfies
ϵ ∈ L(C/P) and

s ∈ L(C/P), sσ ∈ L(P), σ /∈ C(s)⇔ sσ ∈ L(C/P)

In general,

{ϵ} ⊆ L(C/P) ⊆ L(P)

If C(s) = ∅ for every s ∈ L(P) (i.e. no disabling action at all),
then L(C/P) = L(P). We call L(C/P) the closed behavior of the
closed-loop system C/P. The marked behavior of C/P is

Lm(C/P) = L(C/P) ∩ S

Namely those trajectories generated by C/P that are also the de-
sired ones as prescribed by the specification S(⊆ Lm(P)). We say
that the closed-loop system C/P is nonblocking if

Lm(C/P) = L(C/P)

The purpose of the trajectory-feedback control is to ensure that
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the closed-loop system C/P is nonblocking, and every trajectory
s ∈ Lm(C/P) is in the specification S, i.e. Lm(C/P) ⊆ S. The
above implies that every trajectory s ∈ L(C/P) generated by the
closed-loop system is in the closure of the specification S.

Consider the printer with sold state in Fig. 4.1, and speci-
fications Si = Lm(Ei) ∩ Lm(P), where i ∈ {1, 2, 3} and Ei

are displayed in Fig. 4.7.

• S1 requires fixing the printer if the printer breaks
down once, whereas selling the printer for two break-
downs. The following trajectory-feedback controller
enforces this specification:

C(s) =


{sell} if s = s1.breakdown ∈ L(P)

{fix} if s = s2.breakdown ∈ L(P)

∅ otherwise

Here string s1 contains no breakdown event, while
s2 contains exactly one. Note that there is no state-
feedback controller can enforce S1, because the strings
satisfy the first two conditions above hit the same
state in the plant (state 2), but the required control
actions are different. This shows that in order to en-
force S1, one does not only need to know which state
the plant is at (in this case state 2), but also how the
plant arrives at this state.

• S2 imposes no requirement, so the supervisor needs
to disable nothing:

(∀s ∈ L(P)) C(s) = ∅

This specification is conveniently used when the con-
trol purpose is solely to achieve nonblocking behavior
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of the closed-loop system.

• S3 requires disabling everything, which can be
achieved by the following controller:

C(s) =

{start} if s = ϵ

∅ otherwise

Finally consider the warehouse robot controlled by traffic
lights in Fig. 4.3, and specification S4 in Fig. 4.8. This
specification requires that the robot executes move_up at
least once (so as to enter the shelf area to perform an item
pickup). This specification can be enforced by the following
trajectory-feedback controller:

C(s) =

{move_right_c} if s = move_right_u

∅ otherwise

The reader is invited to convince himself/herself that this
specification cannot be enforced by a state-feedback con-
troller.

4.4.3 Automaton representation of closed-loop
system

In the state-based case, the closed-loop system can be represented
by a subautomaton of the specification. This is also the case for the
trajectory-based closed-loop system, with the notable exception
that the specification automaton S is now the synchronous product
of the plant automaton P and the automaton E.
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Figure 4.10: S1 = P||E1

Consider again the printer with sold state in Fig. 4.1, and
specification S1 = Lm(E1)∩Lm(P) (where E1 is displayed
in Fig. 4.7). Form the synchronous product S1 = E1||P,
whose structure is displayed in Fig. 4.10. Note that S1 =

Lm(S1) ⊆ Lm(P), while S1 is not a subautomaton of the
plant P. We can observe that the structure of S1 is suf-
ficient to support the decision-making of the trajectory-
feedback controller

C(s) =


{sell} if s = s1.breakdown ∈ L(P)

{fix} if s = s2.breakdown ∈ L(P)

∅ otherwise

where string s1 contains no breakdown event, while s2 con-
tains exactly one. Indeed, the state (2, 1) in S1 corresponds
to C(s) = {sell}, and (2, 2) corresponds to C(s) = {fix}.
Effectively, the synchronous product ‘expands’ the struc-
ture of the plant P so that the otherwise indistinguishable
state 2 in P can be distinguished by (2, 1) and (2, 2) in S1 to
reflect different numbers of occurrences of the breakdown

event. For this reason, the closed-loop system can be rep-
resented based on S1 (in this particular case is S1 itself).
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4.5 PyTCT
Let’s create the plant automaton of PRINTER_SELL with con-
trollable and uncontrollable events distinguished by red and green
colors, respectively. The result is displayed in Fig. 4.11.

1 statenum=4 #number of states
2 #states are sequentially labeled 0,1,...,statenum -1
3 #initial state is labeled 0
4

5 trans=[(0,'start',1,'c'),
6 (1,'auto_finish',0,'u'),
7 (1,'manual_stop',0,'c'),
8 (1,'breakdown',2,'u'),
9 (2,'fixe',0,'c')

10 (2,'sell',3,'c')] #set of transitions
11 #each triple is (exit state, event label, entering state)
12 #each event is either 'c' (controllable) or 'u' (

uncontrollable)
13

14 marker = [0,1,3] #set of marker states
15

16 pytct.create('PRINTER_SELL', statenum , trans, marker)
17 #create automaton PRINTER_SELL
18

19 pytct.display_automaton('PRINTER_SELL',color=True)
20 #plot PRINTER_SELL.DES with color coding

Figure 4.11: PyTCT create function with color coding of control-
lable events (red) and uncontrollable events (green)

An alternative way of creating a plant automaton with differ-
ent color coding for controllable and uncontrollable events is to
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use numbers (nonnegative integers) as labels for events. PyTCT
recognizes (as default) that odd numbers are controllable events,
whereas even numbers are uncontrollable events.4 The following
code shows how to use this alternative method; the result is in
Fig. 4.12

1 statenum=4 #number of states
2 #states are sequentially labeled 0,1,...,statenum -1
3 #initial state is labeled 0
4

5 trans=[(0,11,1),
6 (1,10,0),
7 (1,13,0),
8 (1,12,2),
9 (2,15,0)] #set of transitions

10 #each triple is (exit state, event label, entering state)
11 #odd numbers for controllable events; even numbers for

uncontrollable events
12

13 marker = [0,1,3] #set of marker states
14

15 pytct.create('PRINTER_SELL', statenum , trans, marker)
16 #create automaton PRINTER_SELL
17

18 pytct.display_automaton('PRINTER_SELL',color=True)
19 #plot PRINTER_SELL.DES with color coding

Figure 4.12: PyTCT create function with color coding of control-
lable events (odd numbers) and uncontrollable events (even num-
bers)

4Warning: PyTCT prohibits mixed use of numbers and strings (with single
quotes) as event labels in the same script.
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Next we create automaton models for specifications. We can di-
rectly use the create function. It may also be convenient to create
a specification by removing certain states and/or transitions from
the plant automaton. The following codes use the subautomaton
function to create the two specification automata in Fig. 4.4. The
results are displayed in Figs. 4.13 and 4.14, respectively.

1 pytct.subautomaton('S1','PRINTER_SELL',[],[(1,'manual_stop'
,0)])

2 #create subautomaton S1 by removing from PRINTER_SELL
3 # [state list] and [transition list]
4

5 pytct.display_automaton('S1',color=True)
6 #plot S1.DES with color coding

Figure 4.13: PyTCT subautomaton function by removing transi-
tions

1 pytct.subautomaton('S2','PRINTER_SELL',[2],[])
2 #create subautomaton S2 by removing from PRINTER_SELL
3 # [state list] and [transition list]
4

5 pytct.display_automaton('S2',color=True)
6 #plot S2.DES with color coding

Note that the resulting automaton of the subautomaton func-
tion need not be trim (see Fig. 4.14). If a trim automaton is re-
quired, use the trim function.
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Figure 4.14: PyTCT subautomaton function by removing states
(and the associated transitions)



Chapter 5

Analyze Controllability

5.1 State-based controllability

Given a plant to be controlled, and a specification that imposes
requirements on the behavior of the plant, we ask:

Does there exist a supervisory controller that enforces
the specification on the plant?

If so, can the controller be constructed?

In this chapter we address these questions by identifying a char-
acterizing condition. We start with state-based feedback control
in this section. Given a plant P = (X,Σ, ξ, x0, Xm) with a sub-
set of controllable events Σc ⊆ Σ, and a state-based specification
S = (Xs,Σs, ξs, x0, Xs,m),1 we aim to answer the question: does
there exist a state-feedback supervisory controller C : X → 2Σc that
enforces the specification on the behavior of the plant?

In the preceding chapter, we have seen a few examples of posi-
tive and negative answers. The intuitive deciding factor is whether
or not the specification can be realized by disabling controllable
events available at proper states of the plant. Following this intu-
ition, we can view the state set Xs as the ‘safe region’, while the
complement X \ Xs ‘unsafe’. Thus the central question becomes:

1Both plant P and specification S are nonblocking; if they are not, trim
them.

79
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can we prevent the states in the safe region Xs from exiting to the
unsafe X \Xs by disabling controllable events?

If the exiting is via a controllable event, we can prevent the
exiting by disabling the controllable event. On the other hand, if
the exiting is via an uncontrollable event, then we would have no
means of keeping this exiting from happening. The above anal-
ysis leads to a central concept in the supervisory control theory:
controllability.

We say that a state-based specification S is controllable with
respect to a plant P if for every state x ∈ Xs and every uncontrol-
lable event σ ∈ Σu, if ξ(x, σu)!, then it must hold that ξs(x, σu)!

(i.e. ξs(x, σu) ∈ Xs). This means that every uncontrollable event
allowed by the plant at every state in the safe region Xs must also
be allowed by the specification (since there is no means of removing
an uncontrollable event based on our assumed control technology).
Writing this condition in one line is as follows:

(∀x ∈ Xs,∀σ ∈ Σu) ξ(x, σu)!⇒ ξs(x, σu)! (5.1)

If this controllability condition holds, then there is no danger
caused by uncontrollable events and thus all we need to do is to
properly disable controllable events. Under this condition, the fol-
lowing controller enforces specification S on the plant P:

C(x) =

{σ ∈ Σc | ξ(x, σ)! & ¬ξs(x, σ)!} if x ∈ Xs

∅ if x ∈ X \Xs

Namely C disables at each state in the safe region Xs all those
controllable events that are allowed by the plant but not allowed
by the specification. Note that C does not disable anything for
any state that is already unsafe (these states are indeed irrelevant
as the purpose of control is to keep states in the safe region Xs

from going to the unsafe X \Xs). The closed-loop system C/P is
exactly S, namely it is nonblocking and the entire specification is
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enforced.
On the flip side, if the controllability condition does not hold,

then there exist a safe state x ∈ Xs and an uncontrollable event σ ∈
Σu such that although ξ(x, σ)!, we do not have ξs(x, σ)!. However,
our assumed control technology cannot disable this uncontrollable
event σ at x, and consequently no controller C can exist to enforce
the specification on the plant.

The above analysis concludes that controllability is both suffi-
cient and necessary for the existence of a state-based supervisory
controller that realizes a given specification.

Example 5.1 Let’s reconsider the example of printer with
a sold state (Fig. 5.1). In this model, the following events
are controllable:

Σc = {start,manual_stop,fix, sell}

while the rest events are uncontrollable:

Σu = {auto_finish,breakdown}

The two specifications S1 and S2 are also displayed in
Fig. 5.1.

• Specification S1 is controllable, since all uncontrol-
lable transitions in the plant remain in S1. Indeed, as
compared to the plant, only one controllable transition
(1,manual_stop, 0) is removed. Thus the following
controller enforces S1:

C(x) =

{manual_stop} if x = 1

∅ if x = 0, 2, 3

• Specification S2 is not controllable: the uncontrollable
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Figure 5.1: Printer with sold state and state-based specifications

event breakdown allowed by the plant at state 1 in the
safe region is not allowed by S2. Therefore there does
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not exist a controller that can enforce S2.
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Figure 5.2: Warehouse robot controlled by traffic lights

Example 5.2 Let’s revisit the warehouse robot controlled
by traffic light, where the plant P and specification S3 are
displayed in Fig. 5.2. This specification S3 is not control-
lable, because the uncontrollable event move_right_u al-
lowed by the plant at the state 4 in the safe region is not
allowed by S3. Hence there is no controller that can enforce
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this specification.

5.2 Trajectory-based controllability

Consider a plant P = (X,Σ, ξ, x0, Xm) with a subset of control-
lable events Σc ⊆ Σ, closed behavior L(P), and marked behavior
Lm(P).2 In this section we consider a trajectory-based specifica-
tion S ⊆ Lm(P). We view the closure S as the ‘safe behavior’,
while L(P) \ S ‘unsafe’, and aim to design a trajectory-based con-
troller C : L(P) → 2Σc to prevent the trajectories in the safe
behavior S from exiting to the unsafe L(P) \ S.

We say that a trajectory-based specification S is controllable
with respect to a plant P if for every trajectory s ∈ S and ev-
ery uncontrollable event σ ∈ Σu, if sσ ∈ L(P) (i.e. allowed by
the plant), then it must hold that sσ ∈ S. This means that the
safe behavior S must be ‘invariant under uncontrollable flows’: no
uncontrollable event allowed by the plant can exit from the safe
S (since otherwise there would be no control means of preventing
the safe trajectories from entering the unsafe region). Writing this
condition in one line is:

(∀s ∈ S, ∀σ ∈ Σu)sσ ∈ L(P)⇒ sσ ∈ S (5.2)

This controllability condition is both sufficient and necessary
for the existence of a trajectory-based supervisory controller that
enforces a given specification. To see sufficiency, consider that the
controllability condition (5.2) holds; then there is no danger of
existing S caused by uncontrollable events, and thus all we need to
do is to properly disable controllable events. Under this condition,

2Consider a nonblocking P so that Lm(P) = L(P).
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the following controller enforces specification S on the plant P:

C(s) =

{σ ∈ Σc | sσ ∈ L(P) & sσ /∈ S} if s ∈ S

∅ if s ∈ L(P) \ S

Namely C disables after each safe trajectory in S all those con-
trollable events that are allowed by the plant but not allowed by
the specification. Note that C does not disable anything for any
trajectory that is already unsafe (these trajectories are indeed ir-
relevant as the purpose of control is to keep safe trajectories in S

from going to the unsafe region). The closed-behavior L(C/P) of
the closed-loop system is exactly S; hence

Lm(C/P) = L(C/P) ∩ S = S ∩ S = S

This means that Lm(C/P) = L(C/P), i.e. the closed-loop system
is nonblocking.

On the necessity, if the controllability condition does not hold,
then there exist a safe trajectory s ∈ S and an uncontrollable
event σ ∈ Σu such that although sσ ∈ L(P), we do not have
sσ ∈ S. However, our assumed control technology cannot disable
this uncontrollable event σ after s, and consequently no trajectory-
based controller C can exist to enforce the specification on the
plant.

Let’s use an example to illustrate the trajectory-based control-
lability. In this example, we also demonstrate that controllability
can be verified based on the specification automaton S which is the
synchronous product of the plant automaton P and the automaton
E.

Example 5.3 Consider the printer with a sold state P and
the trajectory-based specification S1 = Lm(E1)∩Lm(P) (see
Fig. 5.3). To verify if S1 is controllable, form the syn-
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Figure 5.4: S1 = P||E1

chronous product S1 = P||E1, whose structure is displayed
in Fig. 5.4 (copied from Fig. 4.10 for convenience). The
controllability condition (5.2) is checked by examining every
state (pairs of plant and specification states) of S1 whether
or not each uncontrollable event allowed by the first compo-
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nent (state of P) is also allowed by the second component
(state of E1). In this example, it is inspected that this con-
dition holds, which verifies that the specification S1 is con-
trollable. Indeed, the trajectory-feedback controller enforces
S1:

C(s) =


{sell} if s = s1.breakdown ∈ L(P)

{fix} if s = s2.breakdown ∈ L(P)

∅ otherwise

where string s1 contains no breakdown event, while s2 con-
tains exactly one.

5.3 PyTCT
Controllability may be checked by the is_controllable function.
Consider the plant PRINTER_SELL and specification S1 in Figs. 5.5
and 5.6 (created in the preceding chapter and reprinted here for
convenience).

Figure 5.5: PRINTER_SELL plant

The following code shows how to use is_controllable to verify
whether or not S1 is controllable with respect to PRINTER_SELL.

1 pytct.is_controllable('PRINTER_SELL','S1')



88 Chapter 5. Analyze Controllability

Figure 5.6: S1 specification

2 #check if S1 is controllable wrt. PRINTER_SELL

In this example, the above code returns “True”, which confirms
that S1 is controllable with respect to PRINTER_SELL. Also
consider specification S2 (reprinted in Fig. 5.7).

Figure 5.7: S2 specification

The following code verifies that S2 is not controllable with re-
spect to PRINTER_SELL.

1 pytct.is_controllable('PRINTER_SELL','S2')
2 #check if S2 is controllable wrt. PRINTER_SELL

In this case, the following uncontrollable_states function
may be used to compute the set of all uncontrollable states of
the specification (i.e. those of S2 that violate the controllability
condition).

1 pytct.uncontrollable_states('PRINTER_SELL','S2')
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2 #compute the set of uncontrollable states

The above code returns “[1]”. Namely at state 1 of specifica-
tion S2, the controllability condition does not hold. Indeed, on
this state the uncontrollable event breakdown is allowed by plant
PRINTER_SELL but is not allowed by S2.

The same two functions is_controllable and uncontrollable
_states can be used for the trajectory-based controllability. Con-
sider the trajectory-based specification S1 in Fig. 5.4. First let’s
create this specification, which is displayed as SE1 in Fig. 5.8.

1 pytct.sync('SE1','PRINTER_SELL','E1')
2 #synchronous product
3

4 pytct.display_automaton('SE1',color=True)
5 #plot DES with color coding

Figure 5.8: SE1 specification

The following code verifies that SE1 is controllable with respect
to PRINTER_SELL.

1 pytct.is_controllable('PRINTER_SELL','SE1')
2 #check if SE1 is controllable wrt. PRINTER_SELL

Now remove from SE1 the transition (4,breakdown, 5). The
resulting subautomaton SE2 is displayed in Fig. 5.9.

1 pytct.subautomaton('SE2','SE1',[],[(4,'breakdown',5)])
2 #create subautomaton SE2 by removing from SE1
3 # [state list] and [transition list]
4

5 pytct.display_automaton('SE2',color=True)
6 #plot SE2.DES with color coding

Now confirm that SE2 is not controllable with respect to the
plant PRINTER_SELL. Namely the following code returns
‘False’.
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Figure 5.9: SE2 specification

1 pytct.is_controllable('PRINTER_SELL','SE2')
2 #check if SE2 is controllable wrt. PRINTER_SELL

Finally the code below returns “[4]”, which is the only uncon-
trollable state of specification SE2. Indeed, on this state the un-
controllable event breakdown is allowed by plant PRINTER_
SELL but is not allowed by SE2.

1 pytct.uncontrollable_states('PRINTER_SELL','SE2')
2 #compute the set of uncontrollable states
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Design Optimal
Controller

6.1 State-feedback optimal control

We have seen that controllability of a specification is the deciding
property for the existence of a supervisory controller that enforces
that specification. If controllability holds, we can construct a con-
troller that realizes the entire specification.

Now what if controllability of a specification does not hold? Do
we have to give up that specification all together? Well, possibly
the imposed specification is overly strong to be realized fully on
the plant, but part of it may still be realizable by a supervisory
controller. Namely even when a specification turns out not con-
trollable, a ‘subspecification’ may still be controllable and therefore
realizable by a controller.

In this chapter, we address the problem of identifying and
constructing controllable subspecifications of a given specification.
Specifically, given a plant to be controlled and a specification that
imposes requirements on the behavior of the plant, we ask:

Does there exist a controllable subspecification of the
given specification?

If so, can the controllable subspecification be algorith-
mically constructed?

91
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Moreover if there exist multiple such controllable sub-
specificaitons, can we find the largest one?

We are interested in the largest controllable subspecification be-
cause such one would allow the maximal set of desired behaviors.
Correspondingly, the controller that enforces the largest control-
lable subspecification is termed the ‘optimal supervisory controller’.

We start our inquiry with state-feedback control in this section.
Given a plant P = (X,Σ, ξ, x0, Xm) with a subset of controllable
events Σc ⊆ Σ, and a state-based specification S = (Xs,Σs, ξs, x0,

Xs,m),1 we aim to find (if it exists) the optimal state-feedback su-
pervisory controller C : X → 2Σc that enforces the largest subspec-
ification on the behavior of the plant.

Let’s build up intuition from the warehouse robot example.

Example 6.1 Consider the example of warehouse robot
controlled by traffic lights, where the plant P and specifi-
cation S are reprinted in Fig. 6.1 for convenience. We have
seen in Example 5.2 that this specification S is not control-
lable, since the uncontrollable event move_right_u allowed
by the plant at the safe state 4 is not allowed by S3. Hence
there is no controller that can enforce this specification in
full.
But can we find part of the specification that is realizable? In
particular, it is only state 4 that violates the controllability
condition: Once the robot is allowed to move to state 4,
there is no way of preventing it from entering the dangerous
state 6 of the plant. In this sense state 4 should have been
deemed unsafe. This observation suggests that we should
act earlier so that the robot is prohibited from entering the
problematic state 4. To this end, we further remove state 4

1Both plant P and specification S are nonblocking; if they are not, trim
them.
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Figure 6.1: Warehouse robot controlled by traffic lights

to get the subspecification S1 (displayed in Fig. 6.2). Now
check that S1 is controllable. Hence S1 can be realized by
a state feedback controller C : X → 2Σc . This controller is
the following:

C(x) =

{move_right_c} if x = 1

∅ otherwise

The control decision is to disable move_right_c at state 1 to
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Figure 6.2: Largest controllable subspecification of warehouse
robot

prevent the robot from ever entering state 4. Note that this
C is the optimal controller, because the subspecification S1

enforced by C is the largest possible (indeed only one state
is removed which must be done to avoid uncontrollability).
Also note that the closed-loop system C/P is represented by
this automaton S1 and thus nonblocking.

From the above example, we see that we need to identify and
remove those states in the specification automaton S that violate
the controllability condition. Is that all we need to do? There are
in fact two important overlooks:

• Care for nonblocking

• Need of iteration

We illustrate these two points in the extended warehouse robot
example below.

Example 6.2 Consider a (slightly) extended warehouse
robot (old state 1 is split into two new states 1 and 1′), where
the plant P and specification S are displayed in Fig. 6.3.
Similar to Example 6.1, we remove state 4 that violates the
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Figure 6.3: Extended warehouse robot controlled by traffic lights

controllability condition, and obtain the subautomaton S1

(see Fig. 6.4). This S1 is, however, blocking since state 1′

is not coreachable. If we stop here, although controllabil-
ity holds, the closed-loop system would be blocking. This
brings us to the first point: care for nonblocking. The res-
olution of this issue is straightforward: trim S1 (in this
case removing the blocking state 1′), and thereby we get S2

(Fig. 6.4). Are we done? Unfortunately, removing state 1′
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Figure 6.4: Iterated process to derive largest controllable subspec-
ification of extended warehouse robot

makes S2 not controllable again, because the uncontrollable
event move_up_u allowed by the plant at the state 1 is not
allowed by S2. This brings out the second point: need of
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iteration. Namely the two operations of ensuring controlla-
bility and ensuring nonblocking must be iterated until both
properties hold. In this example, we continue to remove
state 1 and obtain S3 (Fig. 6.4). This S3 is checked to be
both controllable and nonblocking, so a state-based feedback
controller C : X → 2Σc exists to enforce S3. This controller
is the following:

C(x) =

{move_up_c} if x = 1

∅ otherwise

The control decision is to disable move_up_c at the initial
state 0 to prevent the robot from ever following the upper
route. One may verify that this C is the optimal controller,
because the subspecification S3 is the largest possible one
that is both controllable and nonblocking. Accordingly the
closed-loop system C/P represented by S3 is nonblocking.

6.2 Optimal controller synthesis

From the preceding section, to synthesize a state-feedback super-
visory controller for enforcing a subspecificaiton, there are two key
operations: (1) identify and remove states that violate the con-
trollability condition, and (2) trim the result to remove blocking
states. These two operations should be applied alternatively as well
as iteratively. In this section, we describe the synthesis algorithm
(i.e. a series of steps of computation).

Consider a plant P = (X,Σ, ξ, x0, Xm) with a subset of control-
lable events Σc ⊆ Σ, and a state-based specification S = (Xs,Σs, ξs,

x0, Xs,m).2 Let U(S) denote the set of all states in S that do not

2Both plant P and specification S are nonblocking; if they are not, trim
them.
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satisfy the controllability condition (or simply the ‘uncontrollable
states’). Formally

U(S) = {x ∈ Xs | (∃σu ∈ Σu) ξ(x, σu)! & ¬ξs(x, σu)!} (6.1)

Note that to find U(S), the plant P is needed (since the transition
function ξ is involved).

In Example 6.1,

U(S) = {4}, U(S1) = ∅

In Example 6.2,

U(S) = {4}, U(S1) = ∅

U(S2) = {1}, U(S3) = ∅

Now we describe the algorithm of synthesizing the optimal con-
troller.

Algorithm 6.1 Optimal State-Feedback Controller Synthesis Al-
gorithm
Input: Plant P, specification S
Output: Optimal controller C

1: construct U(S) as in (6.1)
2: while U(S) ̸= ∅ do
3: S′ ← remove U(S) from S
4: S← trim S′

5: construct U(S) as in (6.1)
6: end while
7: C← S and output C

The two key operations are in lines 3 and 4 respectively. They
are executed alternatively and iteratively until S is trim and U(S)

is empty. Thus the output C is controllable and nonblocking. Note
that C may be empty, in case all the states are removed during
the process. If C is empty, then we say that there does not exist
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the optimal controller.

Why C is the largest controllable and nonblocking subspecifi-
cation of the given S? Suppose on the contrary that it is not. Thus
there is another controllable and nonblocking subspecification C′

(say), which has one more state x or one more transition (x, σ, x′)

than C. Let’s first consider the case of one more state x. Then x

must have been removed during some iteration in either line 3 or
line 4. This means respectively that x violates the controllability
condition or is blocking. But this is a contradiction to the assump-
tion that C′ is both controllable and nonblocking. It remains to
consider the case of one more transition (x, σ, x′). This transition
must also have been removed during some iteration in either line 3
or line 4 when state x or state x′ is removed. This means that
either x or x′ violates the controllability condition or is blocking.
But this is again a contradiction to the assumption that C′ is both
controllable and nonblocking. Therefore, after all, C is the largest
controllable and nonblocking subspecification of the given S.

Finally, a state-feedback supervisory controller C : X → 2Σc

can be defined based on the controllable C. The resulting closed-
loop system C/P is nonblocking because C is so.

Applying Algorithm 6.1 to Example 6.1, we only need a
single iteration:

line 1: U(S) = {4}

line 2: U(S) ̸= ∅

line 3: S1 ← remove U(S) from S

line 4: S1 ← trim S1

line 5: U(S1) = ∅

line 6: end while

line 7: C← S1
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The reader is invited to apply Algorithm 6.1 to Exam-
ple 6.2, and convince him/herself that the output C = S3.

6.3 Trajectory-feedback optimal control

Consider a plant P = (X,Σ, ξ, x0, Xm) with a subset of control-
lable events Σc ⊆ Σ, closed behavior L(P), and marked behavior
Lm(P).3 In this section we consider a trajectory-based specifica-
tion S ⊆ Lm(P). Our goal is to find (if it exists) the optimal
trajectory-feedback supervisory controller C : L(P) → 2Σc that
enforces the largest subspecification of S on the behavior of the
plant.

Let T ⊆ S, and recall that T is controllable (with respect to
P) if and only if (cf. (5.2))

(∀s ∈ T , ∀σ ∈ Σu)sσ ∈ L(P)⇒ sσ ∈ T

Now consider the family of all controllable subspecifications of S:

C(S) := {T ⊆ S | T is controllable}

Let T1, T2 be two members of C(S). Then their union T1 ∪ T2 is
still a member of C(S). To see this, let s ∈ T1 ∪ T2, σ ∈ Σu, and
sσ ∈ L(P). Then s ∈ T1 or s ∈ T2. Consider the case s ∈ T1

(the other case is similar). Since T1 ∈ C(S), it is controllable and
sσ ∈ T1 ⊆ T1 ∪ T2. This proves that T1 ∪ T2 is controllable.

The above property of the family C(S) is called ‘closure under
set unions’. In fact, the union of any number of members in C(S) is
still a member in C(S). This leads to the fact that the family C(S)

3Consider a nonblocking P so that Lm(P) = L(P).
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has a unique largest member, which is the union of all members:

sup C(S) :=
∪

T∈C(S)

T

This largest member sup C(S) is called the supremal controllable
subspecification of S. Thus the trajectory-feedback controller C :

L(P) → 2Σc that enforces sup C(S) is the optimal one. That is,
Lm(C/P) = sup C(S). Such an optimal controller exists if and
only if sup C(S) ̸= ∅. Note that if S is controllable itself, then
sup C(S) = S.

0

1 2

start

breakdown

fixmanual stop

auto finish,

3
sell

E

P

breakdown

fix, sell

0 1

start,
auto finish,
manual stop

start,
auto finish,
manual stop,

Figure 6.5: Printer with sold state and trajectory-based specifica-
tion

Example 6.3 Consider the printer with a sold state P

(Fig. 6.5) and the trajectory-based specification S =

Lm(P) ∩ Lm(E) (Fig. 6.6). This specification requires that
the printer be allowed to breakdown only once (!) The reader



102 Chapter 6. Design Optimal Controller

start manual stop
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(0, 0)

(1, 0) (2, 1)
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(1, 1)

start manual stop
auto finish

(3, 1)

sell
S = P||E

Figure 6.6: S = P||E
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Figure 6.7: Controllable subspecifications

start manual stop
auto finish
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Figure 6.8: Supremal controllable subspecification

can verify that S is not controllable. Consider two subspec-
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ifications of S (Fig. 6.7):

T1 = Lm(T1), T2 = Lm(T2)

Verify that both T1 and T2 are controllable. Thus

T1 ∈ C(S), T2 ∈ C(S)

The controller C1 that enforces T1 disables fix after the
first breakdown in order to avoid the second breakdown,
whereas controller C2 that enforces T2 disables sell after the
first breakdown and also disables start after the first fix in
order to avoid the second breakdown.
Their union is represented by the automaton C in Fig. 6.8.
Namely Lm(C) = T1∪T2. Verify that T1∪T2 is controllable,
so T1 ∪ T2 ∈ C(S). In fact for this example, we have

C(S) = {∅, T1, T2, T1 ∪ T2}

and thus the supremal controllable subspecification is

sup C(S) = Lm(C)

The optimal controller C that enforces sup C(S) only dis-
ables start after the first fix to avoid the second breakdown.
Thus C allows more behavior that either C1 or C2.

Now that we know that the trajectory-feedback controller C

enforcing the supremal controllable subspecification sup C(S) is
the optimal one, the question that remains is: How to compute
sup C(S)? This is done by a similar algorithm in the preceding
section (Algorithm 6.1), with the difference that the specification
S is represented by the synchronous structure P||E. Next we de-
scribe this algorithm.
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Consider a plant P = (X,Σ, ξ, x0, Xm) with a subset of control-
lable events Σc ⊆ Σ, and another automaton E = (Y,Σ, η, y0, Ym)

that represents a requirement.4 Let the control specification S be
the synchronous product of P and E, i.e. S = P||E.

Now define U(S) for the set of all states in S that do not sat-
isfy the trajectory-based controllability condition (or simply the
‘uncontrollable states’). Such an uncontrollable state (pairs of
plant and specification states) is one where there exists an uncon-
trollable event allowed by the first component (state of P) but is
not allowed by the second component (state of E). Formally

U(S) = {(x, y) ∈ X × Y | (∃σu ∈ Σu) ξ(x, σu)! & ¬η(y, σu)!}
(6.2)

Algorithm 6.2 Optimal Trajectory-Feedback Controller Synthe-
sis Algorithm
Input: Plant P, requirement E
Output: Optimal controller C

1: S = P||E
2: construct U(S) as in (6.2)
3: while U(S) ̸= ∅ do
4: S′ ← remove U(S) from S
5: S← trim S′

6: construct U(S) as in (6.2)
7: end while
8: C← S and output C

Like Algorithm 6.1, in Algorithm 6.2 the two key operations of
removing uncontrollable states and blocking states are in lines 4
and 5 respectively. They are executed alternatively and iteratively
until S is trim and U(S) is empty. Different from Algorithm 6.1,
here S is the synchronous product of plant P and requirement E

4Both P and E are nonblocking; if they are not, trim them.
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(line 1); thus

S = Lm(S) = Lm(P) ∩ Lm(E) ⊆ Lm(P)

When the algorithm terminates, the output C is both control-
lable and nonblocking. Note that C may be empty, in case all
the states are removed during the process. If C is empty, then
we say that there does not exist the optimal controller. Otherwise
C is the largest controllable and nonblocking subspecification of S
(for the same reason explained following Algorithm 6.1). Therefore
Lm(C) = sup C(S). We illustrate Algorithm 6.2 by applying it to
Example 6.3.

Consider again the printer P and requirement E in Fig. 6.5.
Their synchronous product S is computed in line 1, which
is displayed in Fig. 6.6. In line 2 we compute

U(S) = {(1, 1)}

This is because the uncontrollable event breakdown is al-
lowed by the first component (plant P) but is not allowed
by the second component (requirement E). Then the con-
dition of line 3 is satisfied, and in line 4 the state (1, 1)

is removed from S together with all the three associated
transitions. Since the resulting automaton is already trim,
line 5 does not remove any state or transitions. Then in
line 6, U(S) = ∅; the while-loop ends in one iteration. The
output C is exactly the one displayed in Fig. 6.8, which
represents the supremal controllable subspecfication.
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6.4 PyTCT
Let’s consider the plant PRINTER_SELL in Fig. 6.9 (reprinted
here for convenience), and create the requirement automaton E as
follows. The automaton E is displayed in Fig. 6.10.

Figure 6.9: PRINTER_SELL plant

1 statenum=2 #number of states
2 #states are sequentially labeled 0,1,...,statenum
3 #initial state is labeled 0
4

5 trans=[(0,'start',0,'c'),
6 (0,'auto_finish',0,'u'),
7 (0,'manual_stop',0,'c'),
8 (0,'breakdown',1,'u'),
9 (1,'start',1,'c'),

10 (1,'auto_finish',1,'u'),
11 (1,'manual_stop',1,'c'),
12 (1,'fix',1,'c'),
13 (1,'sell',1,'c')] #set of transitions
14 #each triple is (exit state, event label, entering state)
15 #each event is either 'c' (controllable) or 'u' (

uncontrollable)
16

17 marker = [0,1] #set of marker states
18

19 pytct.create('E', statenum , trans, marker)
20 #create automaton E
21

22 pytct.display_automaton('E',color=True)
23 #plot E.DES with color coding
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Figure 6.10: E requirement

Now let’s compute the specification S by synchronous product.
The result is displayed in Fig. 6.11.

1 pytct.sync('S','PRINTER_SELL','E')
2 #synchronous product
3

4 pytct.display_automaton('S',color=True)
5 #plot DES with color coding

Figure 6.11: S specification

The function supcon in following code computes the optimal
supervisor that achieves the supremal controllable subspecfication
of S. The result is displayed in Fig. 6.12.

1 pytct.supcon('C','PRINTER_SELL','S')
2 #compute optimal supervisor
3

4 pytct.display_automaton('C', color=True) # display
automaton
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5 # red transition: controllable; green transition:
uncontrollable

Figure 6.12: C optimal supervisor

Finally we can find out the control actions of the optimal su-
pervisor C by the conact function.

1 table = pytct.conact('PRINTER_SELL','C')
2 #compute supervisor's control actions
3

4 print(table)
5 #print control actions

The above code returns that event start is disabled at state 3

of the optimal supervisor C.



Epilogue

I hope that I have included contents just enough to get you started
with the supervisory control theory, and more importantly get you
intrigued in wanting to know more. The following is a short list of
suggested further reading (with my personal bias).

Further reading
• Appetizer: two encyclopedia articles

K. Cai and W.M. Wonham, “Supervisory control of discrete-
event systems”, Encyclopedia of Systems and Control, 2nd ed.,
Springer, 2020.

W.M. Wonham, “Supervisory control of discrete-event systems”,
Encyclopedia of Systems and Control, Springer, 2018.
• First course: two original papers that started the history

P.J. Ramadge and W.M. Wonham, “Supervisory control of a
class of discrete event processes”, SIAM Journal on Control and
Optimization, vol. 25, no. 1, pp. 206–230, 1987.

W.M. Wonham and P.J. Ramadge, “On the supremal control-
lable sublanguage of a given language”, SIAM Journal on Control
and Optimization, vol. 25, no. 3, pp. 637–659, 1987.
• Second course: two meaty books

W.M. Wonham and K. Cai, “Supervisory Control of Discrete-
Event Systems”, Communications and Control Engineering, Springer,
2019.

C. Cassandras and S. Lafortune, “Introduction to Discrete Event
Systems”, 3rd ed., Springer, 2021.
• Dessert: two history papers

109
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W.M. Wonham, K. Cai, and K. Rudie, “Supervisory control of
discrete-event systems: a brief history”, Annual Reviews in Con-
trol, vol. 45, pp. 250–256, 2018.

W.M. Wonham, K. Cai, and K. Rudie, ”Supervisory control of
discrete-event systems: a brief history – 1980-2015”, in Proceed-
ing of the 20th IFAC World Congress, pp. 1827–1833, Toulouse,
France, 2017.

Finally all the PyTCT functions introduced in the book are
collected on the next page as a convenient reference.
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PyTCT function collection (alphabetical order)

FUNCTION WHAT IT DOES
blocking_states find blocking states
conact find control actions of supervisor
create create automaton
display_automaton display automaton
events find events of automaton
init initiate working folder
is_controllable check controllability
is_coreachable check coreachability
is_nonblocking check nonblocking
is_reachable check reachability
is_trim check trim
isomorph check isomorphism of automata
marker find marker states of automaton
reachable_string find string reaching given state
sample sample string from automaton
selfloop selfloop events on automaton
shortest_string find shortest string
simulation_automaton simulate string on automaton
statenum find state number of automaton
subautomaton find subautomaton
supcon compute optimal supervisor
sync compute synchronous product
trans find transitions of automaton
trim trim automaton
uncontrollable_states find uncontrollable states
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action, 12
automaton, 11, 15

subautomaton, 61, 64

blocking state, 31
blocking_states, 38

cartesian product, 17, 43
catenation, 20
closed behavior, 21, 33, 71
closed-loop system, 64, 71
closure of behavior, 33
conact, 108
conflicting, 49
controllability, 80, 84

state-based controllability, 80
trajectory-based controllabil-

ity, 84
controllable event, 57
controller, 63, 69, 80

optimal controller, 92, 100
state-feedback supervisory con-

troller, 63, 79
trajectory-feedback supervi-

sory controller, 69
coreachable, 29, 34
coreachable_string, 37
create, 23, 24, 35, 51

deadlock state, 32
display_automaton, 24, 35, 51
dynamic system, 11, 20

event, 12, 15, 43
controllable event, 57
uncontrollable event, 57

event set, 15, 43
events, 24

init, 23
initial state, 12, 16, 44
is_controllable, 87
is_coreachable, 36
is_nonblocking, 37
is_reachable, 36
is_trim, 38
isomorph, 54

kleene closure, 19

marked behavior, 22, 33, 71
marker, 24
marker state, 12, 16, 44

nonblocking, 31, 35

plant, 57
powerset, 63
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pytct, 22

reachable, 28, 34
reachable_string, 36

sample_automaton, 25
selfloop, 46, 50, 53
shortest_string, 37
simulate_automaton, 25
specification, 60

state-based specification, 60
subspecification, 91
trajectory-based specification,

66
state, 12, 15, 43

blocking state, 31
deadlock state, 32
initial state, 12, 16, 44
marker state, 12, 16, 44
uncontrollable state, 98, 104

state feedback loop, 64
state set, 15, 43
state transition, 12, 16
state transition function, 17, 43
state transition set, 16
statenum, 24
string, 19

empty string, 19
length, 19

subautomaton, 61, 64, 77
subspecification, 91
supcon, 107
supervisor, 57

supremal controllable subspeci-
fication, 101

sync, 52
synchronous product, 39, 43, 49
synchronously nonconflicting, 48
synthesis algorithm, 98, 104

trajectory, 21
trajectory feedback loop, 70
trans, 24
trim, 32, 35, 38

uncontrollable event, 57
uncontrollable state, 98, 104
uncontrollable_states, 88
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